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Summary

We develop and describe online algorithms for performing online semiparametric regres-
sion analyses. Earlier work on this topic is by Luts, Broderick and Wand (2014), Jour-
nal of Computational and Graphical Statististics , 23, 589–615, where online mean-field
variational Bayes (MFVB) was employed. In this article we instead develop sequential
Monte Carlo approaches to circumvent well-known inaccuracies inherent in variational
approaches. For Gaussian response semiparametric regression models, our new algorithms
share the online MFVB property of only requiring updating and storage of sufficient statis-
tics quantities of streaming data. In the non-Gaussian case, accurate online semiparametric
regression requires the full data to be kept in storage. The new algorithms allow for new
options concerning accuracy–speed trade-offs for online semiparametric regression.

Key words: generalised additive models; generalised linear mixed models; real-time algorithms;
penalised splines.

1. Introduction

Online semiparametric regression is concerned with rapid online fitting of flexible
regression models, such as generalised additive models, and continuously updated inference
as data stream in. Luts, Broderick and Wand (2014; LBW hereafter) laid out a framework
for online, also known as real-time, semiparametric regression in the wake of developments
over the preceding two decades such as Bayesian mixed-model-based penalised splines and
mean-field variational Bayes (MFVB). The setting and motivations are identical to those
of Luts, Broderick & Wand (2014), and background material in the earlier article on the
essence of online semiparametric regression also applies here. The crux of this article is
the provision of sequential Monte Carlo (SMC) alternatives to the online MFVB approach
of Luts, Broderick & Wand (2014).

Online fitting of statistical models for sequentially arriving data has a very long history
and large literature. The essential goal is obtaining fits and corresponding inference with
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2 ONLINE SEMIPARAMETRIC REGRESSION

online updating—such that the online results are similar to the batch results. Clearly, online
fitting is preferable in applications in which the data arrive rapidly, and repeated batch fitting
is not computationally feasible. Three recent examples of such situations are online fitting
of regression models for streaming data such as electronic health records and mobile health
data (Luo & Song 2023), online anomaly detection in streaming temporal data (Talagala
et al. 2020) and real-time fitting of item response theory models for ratings of movies
(Weng & Coad 2018).

For semiparametric regression and related areas, there is also a large literature
on online fitting, with early contributions such as recursive kernel density estimation
(e.g., Yamato 1971; Carroll 1976) and kernel regression (e.g., Krzyzak & Pawlak 1982;
Yin & Yin 1996). However, none of these 20th Century contributions addressed the
problem of online smoothing parameter choice and, instead, were concerned with the
theoretical properties of kernel estimators for deterministic smoothing parameter sequences.
Bayesian computing developments since the 1990s have given rise to online semiparametric
regression schemes for which the smoothing parameters are updated in a principled and
practical manner. For the kriging approach to nonparametric regression, Gramacy &
Polson (2011) achieved this via SMC. As mentioned earlier, Luts, Broderick & Wand (2014)
achieved it via MFVB. The essence of the present article is SMC methodology for online
semiparametric regression according to the mixed-model-based splines approach advocated
in Ruppert, Wand & Carroll (2003) monograph. This approach has the attraction of requiring
only the mixed-model extension of ordinary linear models to achieve nonparametric and
semiparametric regression fitting and inference.

The algorithms of Luts, Broderick & Wand (2014) have the attractiveness of being
purely online in that, when a new vector of observations arrives, the approximate
Bayesian semiparametric regression fit is updated without having to store or access previous
observations . Instead, only key sufficient statistics need to be updated—after which the new
observation vector can be discarded. A disadvantage of Luts, Broderick & Wand (2014)
is that the inference is subject to varying degrees of inaccuracy due to mean-field-type
variational approximation error. This is particularly the case for regression models with
non-Gaussian responses.

The SMC-based approach used here is devoid of variational approximations and
produces accurate online semiparametric regression fitting and inference. In the case of
regression models with Gaussian response, purely online fitting and inference is achievable.
However, for regression models with non-Gaussian responses, the purely online feature
has to be sacrificed to overcome the accuracy shortcomings of the Luts, Broderick &
Wand (2014) approach and the full data must be kept in storage. The upshot is that this
article’s online semiparametric regression approach is more accurate than, but not as fast as,
the approach used in Luts, Broderick & Wand (2014). Depending on the speed requirements
of the application and volume of data requiring storage, the new SMC approaches to online
semiparametric regression may be preferable. In short, the contributions of this article
provide users with speed–accuracy trade-off options for online semiparametric regression.

SMC methodology of the type used here originates with Kong, Liu & Wong (1994).
Liu & Chen (1998) applied the approach to dynamical systems and introduced the sequential
Monte Carlo idiom. Other key early contributions include Gilks & Berzuini (2001) and Pitt
& Shephard (1999). A general theoretical framework for SMC was devised by Del Moral,
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Doucet & Jasra (2006). A comprehensive and contemporary overview of SMC is provided
by Chopin & Papaspiliopoulos (2020).

Section 2 lays down some preliminary infrastructure that is intrinsic to the SMC
approach to online semiparametric regression. In Section 3 we treat Gaussian response
models, starting with multiple linear regression. For this special case, the new methodology
is relatively simple, and the essence of the general approach can be elucidated in a
reasonably concise manner. Section 4 then tackles the more challenging non-Gaussian
response situation. In Section 5 we present some illustrations that demonstrate the good
inferential accuracy of online SMC and contrast it with the patchy performance of online
MFVB. Some concluding remarks are made in Section 6.

2. Preliminary infrastructure

Online semiparametric regression via SMC depends on some fundamental concepts
and results, which we lay out in this section. Throughout this section, 1(P) denotes the
indicator of the proposition P being true.

2.1. Discrete distribution nomenclature

Suppose that a discrete random variable assumes the values of 5, 11 and 13 with
probabilities 2/7, 4/7 and 1/7, respectively. Its probability mass function p is

p(5) = 2/7, p(11) = 4/7, p(13) = 1/7 and p(x) = 0 if x /∈ {5, 11, 13}. (1)

We say that p has atoms a = [5 11 13]T and probabilities p = [2/7 4/7 1/7]T .
The corresponding cumulative distribution function is, for x ∈ R

F (x ; a, p) = (2/7)1(x ≤ 5) + (4/7)1(x ≤ 11) + (1/7)1(x ≤ 13),

and quantile function is, for 0 ≤ q ≤ 1

Q(q; a, p) = inf {x ∈ R : q ≤ F (x; a, p)} = 5 + 61(q > 2/7) + 21(q > 6/7). (2)

The concepts illustrated here are, of course, very basic and straightforwardly extendable
to general discrete random variables.

2.2. Discrete posterior distribution approximations

Let θ be a generic parameter in a Bayesian statistical model that takes values over
a continuum such as R, R+ or [0, 1]. Also, let ycurr denote the currently observed data.
Then, within the Bayesian model, θ is a continuous random variable and its posterior
distribution is characterised by the probability density function p

(
θ | ycurr

)
. An intrinsic

feature of online semiparametric regression via SMC is the sequential approximation of
p
(
θ | ycurr

)
by probability mass functions as new observations arrive. To repeat, even though

p
(
θ | ycurr

)
is a probability density function, it is sequentially approximated by probability

mass functions as the data stream in.
Suppose that a new observation ynew has just been read in. The currently observed data

is then updated according to ycurr ← (
ycurr, ynew

)
. The current posterior density function of
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4 ONLINE SEMIPARAMETRIC REGRESSION

Algorithm 1. The SYSTEMATICRESAMPLE algorithm .

Inputs: Θ (d × M ), p (M × 1) such that all entries of p are non-negative and pT 1 = 1

ω1 ←− the M × 1 vector of cumulative sums of the entries of p ; ω2 ←− M ω1

u ←− draw from the Uniform(0, 1) distribution ; ω3 ←− u ; k ←− 1

for m = 1, . . . M :

while
{
ω3 < (ω2)k

}
k ←− k + 1 ; (ι)m ←− k ; ω3 ←− ω3 + 1

Θ ←− d × M matrix with the current columns of Θ replaced by those indexed by ι

Output: Θ (d × M )

θ , p
(
θ | ycurr

)
, is updated to be a probability mass function having atoms aθ and probabilities

pθ . Then the current posterior mean of θ is approximated by
(
pθ

)�
aθ and, for example, a

current approximate 95% credible interval for θ is(
Q
(
0.025; aθ , pθ

)
, Q

(
0.975; aθ , pθ

))
,

where Q
(·; aθ , pθ

)
is the quantile function corresponding to the probability mass function

having atoms aθ and probabilities pθ .

2.3. The SystematicResample algorithm

A fundamental component of SMC procedures is drawing a sample from a d -variate
discrete distribution having M atoms. The sample size is also M . Drawing a simple random
sample is usually called multinomial resampling in the SMC literature. However, in their
section 9.7, Chopin & Papaspiliopoulos (2020) advise against multinomial sampling due
to its poor performance compared with other schemes. A simple alternative scheme is
systematic resampling , which is the one that we adopt here. The operational steps are
provided by the SYSTEMATICRESAMPLE algorithm, listed as Algorithm 1, which involves
storing the atoms as columns of a d × M matrix.

An example of the last step of SYSTEMATICRESAMPLE is as follows: if d = 3, M = 5
and ι = (3, 3, 5, 2, 2), then the inputted matrix⎡

⎣1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

⎤
⎦ is outputted as

⎡
⎣7 7 13 4 4

8 8 14 5 5
9 9 15 6 6

⎤
⎦ .

A justification of Algorithm 1 is given in Section S.2.1 of Supporting Information.

2.4. Distributional definitions

The random variable x has an Inverse-Gamma distribution with parameters κ and λ,
written x ∼ Inverse-Gamma(λ, κ), if and only if its density function is

p(x) = λκ

�(κ)
x−κ−1 exp(−λ/x)1(x > 0).
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In the semiparametric regression models to follow, it is usual to place a Half Cauchy
prior distribution on each of the standard deviation parameters. Let σ denote a typical
standard deviation parameter. Then the notation σ ∼ Half-Cauchy(s) means that σ has the
density function

p(σ ) = 21(σ > 0)

π s
{
1 + (σ/s)2

} .

However, via introduction of an auxiliary random variable a , we can express σ ∼
Half-Cauchy(s) as follows:

σ 2 | a ∼ Inverse-Gamma

(
1

2
, 1/a

)
, a ∼ Inverse-Gamma

(
1

2
, 1/s2

)
. (3)

Representation (3) has the attraction of leading to draws from standard distributions
in our SMC schemes.

2.5. Vector definitions and conventions

The symbol 1 denotes a column vector having all entries equal to 1. If a is a column
vector, then ||a|| =

√
a�a denotes the Euclidean norm of a. If a and b are both d × 1

vectors, then a � b denotes the d × 1 vector containing the element-wise products of the
entries of a and b. Similarly, a/b is the d × 1 vector of element-wise quotients. Also,
if s is a scalar-to-scalar function, then s(a) is the d × 1 vector containing the element-
wise function evaluations. An example is exp

(
[7 4 6]�

) = [exp(7) exp(4) exp(6)]�. Also,
max (a) denotes the largest entry in a.

2.6. Overview of online semiparametric regression via sequential Monte Carlo

Loosely speaking, semiparametric regression involves extensions of parametric linear
models in which nonlinear effects are handled using suitable basis functions and penalisation
(e.g., Ruppert, Wand & Carroll 2003). Special cases include nonparametric regression,
generalised additive models, varying-coefficient models and generalised additive mixed
models. The version of semiparametric regression that we use here is Bayesian models
for which the nonlinear effects correspond to mixed-model-based penalised splines. As
an illustrative example, consider the regression-type dataset with responses yi ∈ {0, 1} and
bivariate continuous predictors (x1i , x2i ), 1 ≤ i ≤ n . Then a logistic additive model is

yi | β, u1, u2

ind.∼ Ber

(
expit

(
β0 + β1x1i +

K1∑
k=1

u1k z1k (x1i ) + β2x2i +
K2∑

k=1

u2k z2k (x2i )

))
,

β0, β1, β2
ind.∼ N

(
0, σ 2

β

)
, ur | σ 2

ur
ind.∼ N

(
0, σ 2

urIKr

)
, (4)

σ 2
ur | aur

ind.∼ Inverse-Gamma

(
1

2
, 1/aur

)
, aur

ind.∼ Inverse-Gamma

(
1

2
, 1/s2

σ 2

)
, r = 1, 2,

where
ind.∼ stands for ‘independently distributed as’ and expit(x) = 1/

(
1 + e−x

)
. The

functions {z1k (·) : 1 ≤ k ≤ K1} and {z2k (·) : 1 ≤ k ≤ K2} are suitable spline bases (see e.g.,
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y

β

u1 u2

σu1
2 σu2

2

au1 au2

Figure 1. Directed acyclic graph corresponding to the Bayesian logistic additive model (4). The
shading indicates that the y node is observed.

Wand & Ormerod 2008) for the x1 and x2 nonlinear effects. Also, σβ > 0 and sσ 2 > 0 are
user-specified hyperparameters. Figure 1 is a directed acyclic graph representation of (4)
with, for example, y denoting the vector containing the yi data. The y node is shaded to
indicate that it corresponds to the observed data. Each of the other nodes requires inference.

Model (4) and its Figure 1 representation exemplifies the approach to Bayesian
semiparametric regression used here, with spline basis function penalisation achieved via
linear mixed-model embedding. Batch fitting of (4) is straightforward using Bayesian
inference engines such as JAGS (Plummer 2022) and Stan (Stan Development Team 2022)
(e.g., Harezlak, Ruppert & Wand 2018). Our concern here, though, is online fitting of (4)
as data stream in. Algorithm 5 of Luts, Broderick & Wand (2014) provides a solution to
this problem using online MFVB. However, this approach is susceptible to poor Bayesian
inferential accuracy. Therefore, the SMC alternative is being pursued here.

Typical Bayesian semiparametric regression models have between 10s and 100s of
parameters requiring inference from the response and predictor observations. These include
fixed effects, random effects, spline coefficients and covariance matrix parameters. Let d
denote the total number of such variables, and let θ be the d × 1 vector containing them. For
online semiparametric regression, the posterior density function of θ is sequentially approx-
imated by probability mass functions having M atoms, which are referred to as particles .
The value of M is a user-specified tuning parameter, and a reasonable default is M = 1000.

Algorithm 2 conveys the SMC approach to online semiparametric regression in generic
terms. Justification for this scheme, which applies to Bayesian models in general, is given
in Section S.1 of Supporting Information. Most of the steps in Algorithm 2 involve simple
calculations. The possible exception is the step involving drawing independent samples
from the current full conditional distributions. For the sub-vectors of θ for which the
full conditional distribution has a standard form, such as Multivariate Normal or Inverse-
Gamma, this step is also straightforward. Moreover, for such fully Gibbsian settings, the
updates depend only on sufficient statistics of the streaming data such as the sum of squares
of the responses. Therefore, only these sufficient statistics need to be updated and stored
for the Gibbsian situations that arise in Gaussian response semiparametric regression. The
generalised response situation, with model (4) as an example, is more challenging because
of the current full conditional distributions having nonstandard forms and the need for more
elaborate approaches that require passes through the current full data.

As explained in Section S.1.1.1 of Supporting Information, the general form of the
probability vector updates when a new response ynew and its corresponding predictor data
vector arrive is
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Algorithm 2. The sequential Monte Carlo approach to online semiparametric regression in
generic form. Here θ is the vector containing all fixed effects, random effects and covariance
matrix parameters in the semiparametric regression model of interest.

Initialise the sample size to be 0. Initialise key sufficient statistic quantities.
Initialise the d × M matrix θSMC such that each row contains M draws from the
posterior distribution of each component of θ .
Initialise the particle probability vector p to be the M × 1 vector with each entry
equal to 1/M .
Cycle:

Read in a new observation vector. Increment the sample size by 1.
Update key sufficient statistic quantities.
Use the likelihood of the new observation vector to update p.
If the sum of squares of entries of p is above a particular threshold then

Update θSMC by drawing a sample of size M from the d -variate discrete
distribution with M atoms corresponding to the columns of θSMC and
probability vector p. This step is facilitated by the SYSTEMATICRESAMPLE

algorithm. Set p to be the M × 1 vector with each entry equal to 1/M .

Update θSMC by drawing samples from the current full conditional distribu-
tions of sub-blocks of θ . Typically, the sub-blocks correspond to (1) the
coefficients vector and (2) variance or covariance matrix parameters.
Approximate the current posterior distribution of θ by the d -variate discrete
distribution with M atoms corresponding to the columns of θSMC and
probability vector p. Make inferential summaries of quantities of interest
based on the current approximate posterior distribution of θ as described in
Section 2.2.

until data no longer available or analysis terminated.

pnew
m ∝

{
p
(
θ | ycurr, ynew

)
p
(
θ | ycurr

)
}

pcurr
m , 1 ≤ m ≤ M . (5)

Straightforward algebraic arguments then lead to the updating steps:

�m ← �m + log -likelihood of ynew based on (θSMC)m , 1 ≤ m ≤ M ,

pnew ← exp{� − max (�)}
1T exp{� − max (�)} , (6)

with logarithms and centring used to mitigate against overflow and underflow in the proba-
bility vector updates. Note that the likelihood of ynew is given by p (ynew | parents of ynew)

in the model’s directed acyclic graph. For the illustrative logistic additive model example
given by (4) and Figure 1, we have

�m ← �m + ynewηm − log
(
1 + eηm

)
, 1 ≤ m ≤ M ,

© 2025 Statistical Society of Australia.



8 ONLINE SEMIPARAMETRIC REGRESSION

where

ηm = (
β0SMC

)
m + (

β1SMC

)
mx1new +

K1∑
k=1

(u1 SMC)kmz1k (x1new) + (
β2SMC

)
mx2new

+
K2∑

k=1

(u2SMC)kmz2k (x2new)

and (x1new, x2new) is the new predictor pair that partners ynew.

3. Gaussian response models

For reasons explained in Section 1, it is prudent to first describe the online
semiparametric regression via SMC for situations where Gaussianity of the responses can
be assumed. We start with the familiar multiple linear regression setting.

3.1. Multiple linear regression

Let X be an n × p design matrix, and consider the Bayesian regression model

y | β, σ 2 ∼ N
(
Xβ, σ 2 I

)
, β ∼ N

(
μβ , �β

)
, σ ∼ Half-Cauchy

(
sσ 2

)
(7)

As explained in Section 2.4, an equivalent but more tractable model is where

σ ∼ Half-Cauchy
(
sσ 2

)
is replaced by the auxiliary variable representation

σ 2 | a ∼ Inverse-Gamma(1/2, 1/a), a ∼ Inverse-Gamma
(
1/2, 1/s2

σ 2

)
. (8)

Batch-fitting of (7) via Markov Chain Monte Carlo (MCMC) is very well established
(e.g., Gelman et al. 2014, Chapters 11–12) and it is listed in Algorithm 3. It relies on the
result (e.g., Tierney 1994) that, after convergence can be assumed following the ‘burn-in’
phase of length Nburn,

successive draws from the full conditional distributions of β , σ 2 and a

constitute draws for the joint posterior density function: p
(
β, σ 2, a | y

)
. (9)

Note that Algorithm 3 uses the spectral decomposition of the matrix denoted by 


to efficiently obtain draws from the full conditional distribution of the β vector. The
justifications for this and other aspects of Algorithm 3 are given in Section S.2.2 of
Supporting Information.

Algorithm 4 is the online counterpart of Algorithm 3, based on the general approach
of Algorithm 2. Algorithm 4 differs in that the data arrive sequentially and the fits and
inferential summaries are updated in real time. It has the attractive feature that the posterior
distribution updates depend only on the sufficient statistics yTy, XTy and XTX. This implies
that the streaming data do not have to be stored or used again after the sufficient statistics
have been updated. In this sense, Algorithm 4 achieves purely online fitting and inference
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Algorithm 3. Batch Markov Chain Monte Carlo algorithm for approximate inference in
the Gaussian response linear model.

Data Inputs: y (n × 1) and X (n × p).
Markov Chain Monte Carlo Dimension Inputs: Nburn and Nkept, both positive integers.
Hyperparameter Inputs: μβ (p × 1), Σβ (p × p) symmetric and positive definite,
sσ 2 > 0.
yTy ←− yT y ; XTX ←− X T X ; XTy ←− X T y
For g = 1, . . . , Nburn + Nkept:

Ω ←− XTX
(σ 2)[g−1]

+ Σ−1
β

decompose Ω = U Ωdiag(dΩ)U T
Ω where U ΩU T

Ω = I

z ←− p × 1 vector containing totally independent N(0, 1) draws

β[g] ←− U Ω

⎡
⎣U T

Ωz√
dΩ

+
U T

Ω

{
XTy

/
(σ 2)[g−1] + Σ−1

β μβ

}
dΩ

⎤
⎦

a [g] ind.∼ Inverse-Gamma
(

1, {(σ 2)[g−1]}−1 + s−1
σ 2

)
(σ 2)[g] ind.∼ Inverse-Gamma

(
(n + 1)/2, (a [g])−1

+ 1
2

{
yTy − 2(XTy)T β[g] + (

β[g]
)T XTXβ[g]

})
.

Produce summaries based on the kept β[g] and (σ 2)[g] chains,
Nburn + 1 ≤ g ≤ (Nburn + Nkept), being draws from the posterior distributions of β and
σ 2 (due to result (9)).

according to the definition described in Section 1. Section S.2.3 of Supporting Information
provides justifications for the Algorithm 4 steps.

Algorithm 5 is a modification of Algorithm 4, which allows for the possibility of
batch-based tuning at the start of the online regression analysis. Its justification is given in
Section S.2.4 of Supporting Information. An illustration of batch-based tuning to properly
initialise an online semiparametric regression analysis is given in Section 5.2 (see Figure 4).

Algorithm 5 can be used to produce convergence diagnostic graphics analogous to
Figures 3 and 5 in Luts, Broderick & Wand (2014).

3.2. Linear mixed models

Our mixed-model-based splines approach to Bayesian semiparametric regression
makes use of the following class of linear mixed models:

y|β, u, σ 2
ε ∼ N

(
Xβ + Zu, σ 2

ε I
)

,

u|σ 2
u1, . . . , σ 2

uR ∼ N
(
0, blockdiag

(
σ 2

u1 IK1 , . . . , σ 2
uR IKR

))
. (10)

Here, y is an n × 1 vector of response variables, β is a p × 1 vector of fixed effects,
u is a vector of random effects, X and Z are design matrices, σ 2

ε is the error variance and
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10 ONLINE SEMIPARAMETRIC REGRESSION

Algorithm 4. Online sequential Monte Carlo algorithm for online approximate inference
in the Gaussian response linear model.

Tuning Parameter Inputs (defaults): M ∈ N (1000) ; τ > 0 (2/M ).
Hyperparameter Inputs: μβ (p × 1), Σβ (p × p) symmetric and positive definite, sσ 2 > 0.
Initialize:

βSMC ←− p × M matrix with columns containing independent random
samples from N(μβ , Σβ)

aSMC ←− 1 × M vector containing arandom sample from
Inverse-Gamma(1/2, 1/s2

ε )

σ 2
SMC ←− 1 × M vector containing a random sample from Half-Cauchy(sσ 2)

� ←− log
(
1/M

)
1 ; n ←− 0 ; yTy ←− 0

XTy ←− 0 (p × 1) ; XTX ←− 0 (p × p).

Cycle:

Read in ynew(1 × 1) and x new(p × 1) ; n ←− n + 1
yTy ←− yTy + y2

new ; XTy ←− XTy + x newynew

XTX ←− XTX + x newxT
new ; η ←− βT

SMCx new

� ←− � + (ynewη − 1
2 η � η)/{(σ 2

SMC)
T } − 1

2 log{(σ 2
SMC)

T }
p ←− exp{� − max(�)}/[1T exp{� − max(�)}]
If pT p > τ then

⎡
⎣ βSMC

aSMC

σ 2
SMC

⎤
⎦ ←− SYSTEMATICRESAMPLE

⎛
⎝
⎡
⎣ βSMC

aSMC

σ 2
SMC

⎤
⎦ , p

⎞
⎠

� ←− log
(
1/M

)
1

For m = 1, . . . , M :

Ω ←− XTX
(σ 2

SMC)m
+ Σ−1

β

decompose Ω = U Ωdiag(dΩ)U T
Ω where U ΩU T

Ω = I

z ←− p × 1 vector containing totally independent N(0, 1) draws

mth column of βSMC ←−U Ω

⎧⎨
⎩U T

Ωz√
dΩ

+
U T

Ω

(
XTy

/
(σ 2

SMC)m + Σ−1
β μβ

)
dΩ

⎫⎬
⎭

(aSMC)m ∼ Inverse-Gamma
(

1, (σ 2
SMC)

−1
m + s−1

σ 2

)
(σ 2

SMC)m ∼ Inverse-Gamma
(
(n + 1)/2, (aSMC)

−1
m

+(1/2)
{

yTy − 2
(
(XTy)T βSMC

)
m

+(
βT

SMCXTXβSMC

)
mm

})
.

Produce summaries based on the current approximate posterior distributions of β

and σ 2 equalling the probability mass functions with atoms stored in βSMC and σ 2
SMC,

respectively, and probabilities p.

until data no longer available or analysis terminated.
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Algorithm 5. Modification of Algorithm 4 to include batch-based tuning and convergence
diagnosis.

1. Set nwarm to be the warm-up sample size and nvalid to be size of the validation period.
Read in the first nwarm + nvalid response and predictor values.

2. Create ywarm and X warm consisting of the first nwarm response and predictor values.
3. Feed ywarm and X warm into the batch Markov chain Monte Carlo Algorithm 3 with

Nkept = M . Use the kept chains β[g], (σ 2)[g] and a [g], 1 ≤ g ≤ M , to initialise βSMC,
aSMC and σ 2

SMC.
4. Set yTy ← yT

warmywarm, XTy ← X T
warmywarm, XTX ← X T

warmX warm and n ← nwarm.
5. Run the online sequential Monte Carlo Algorithm 4 until n = nwarm + nvalid.
6. Use convergence diagnostic graphics to assess whether the online parameters are

converging to the batch parameters.

(a) If not converging then return to Step 1 andincrease nwarm.
(b) If converging then continue running the online sequential Monte Carlo

Algorithm 4 until data no longer available or analysis terminated.

σ 2
u1, . . . , σ 2

ur are variance parameters corresponding to sub-blocks of u of size K1, . . . , KR .
We set the priors to be

β ∼ N
(
μβ , �β

)
, σur ∼ Half-Cauchy (sur) , 1 ≤ r ≤ R, σε ∼ Half-Cauchy (sε) (11)

with the hyperparameters �β symmetric and positive definite and sε, sur > 0 for 1 ≤ r ≤ R.
As in Section 3, we introduce the auxiliary variables

aur ∼ Inverse-Gamma
(
1/2, 1/s2

ur

)
and aε ∼ Inverse-Gamma

(
1/2, 1/s2

ε

)
(12)

and use the analogue of (8) to induce Half-Cauchy priors on the standard deviation
parameters.

As described in Section 2 of Zhao et al. (2006), models (10) and (11) cover several
important special cases, including (with example number from Zhao et al. (2006) added):

• simple random effects models (Examples 1 and 2),
• cross random effects models (Example 3),
• nested random effects models (Example 4),
• generalised additive models (Example 6),
• semiparametric mixed models (Example 7),
• bivariate smoothing and geoadditive model extensions (Example 8).

Examples 2 and 6 of Zhao et al. (2006) involve 2 × 2 and 3 × 3 unstructured
covariance matrix parameters, which, strictly speaking, are not special cases of (11).
However, as discussed in Section 3.3, the unstructured covariance matrix extension is quite
straightforward.

Let
C = [X Z]

© 2025 Statistical Society of Australia.



12 ONLINE SEMIPARAMETRIC REGRESSION

be the combined design matrix in (10) and let P be the number of columns in C. Then,
each pass of the corresponding online SMC algorithm involves arrival and processing of
a new scalar response measurement, ynew, and a P × 1 vector cnew, corresponding to the
new row of C. This results in Algorithm 6 for purely online fitting of (10). Its justification
is given in Section S.2.5 of Supporting Information.

3.3. Extension to unstructured covariance matrices for random effects

A simple special case of (10) is the random intercept model , for which the first two
hierarchical levels are set to

yij | β0, β1, Ui , σ
2
ε

ind.∼ N
(
β0 + Ui + β1 xij, σ

2
ε

)
, 1 ≤ i ≤ m , 1 ≤ j ≤ ni ,

and Ui | σ 2
u

ind.∼ N
(
0, σ 2

u

)
. (13)

The random intercepts and slopes extension of (13) is

yij | β0, β1, Ui , Vi , σ
2
ε

ind.∼ N
(
β0 + Ui + (β1 + Vi ) xij, σ

2
ε

)
, 1 ≤ i ≤ m , 1 ≤ j ≤ ni ,

and

[
Ui

Vi

]
| �

ind.∼ N(0, �), where � =
[

σ 2
u ρuv σu σv

ρuv σu σv σ 2
v

]

is an unstructured 2 × 2 covariance matrix. The conjugate prior for � is the Inverse-Wishart
distribution. Note that

� | auv1, auv2 ∼ Inverse-Wishart

(
ν + 1, 2ν

[
1/auv1 0

0 1/auv2

])
,

auv1, auv2
ind.∼ Inverse-Gamma (1/2, 1/suv) , ν, suv > 0

provides a covariance matrix extension of σu ∼ Half-Cauchy (Au). The choice ν = 2
imposes a Uniform(−1, 1) distribution on ρuv and Half-t2 distributions on σu and σv . This
is described in Huang & Wand (2013), including the definition of the Inverse-Wishart(a , B)

distribution. Extension to models with larger unstructured covariance matrices is similar.

4. Generalised response models

We now switch attention to semiparametric regression models for which the response
is non-Gaussian, which we will refer to as generalised response models, and include binary
and count response types. We begin with generalised linear models, for which the gist of
the generalised response extension can be conveyed without a large notational burden.

4.1. Generalised linear models

As with the (7) set-up, let X be an n × p design matrix and β be a p × 1 coefficient
vector. In this subsection we now suppose that the entries of the n × 1 response vector y
have the following one-parameter exponential family probability mass or density function:

p(y|β) = exp
{
y�Xβ − 1�b(Xβ) + 1�c(y)

}
h(y) (14)

© 2025 Statistical Society of Australia.
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Algorithm 6. Online sequential Monte Carlo algorithm for approximate inference in the
Gaussian response linear mixed model (10).

Tuning Parameter Inputs (defaults): M ∈ N (1000) ; τ > 0 (2/M ).
Hyperparameter Inputs: μβ (p × 1), Σβ (p × p) symmetric and positive definite,
sσ 2 > 0, sur > 0, 1 ≤ r ≤ R.
Perform batch-based tuning runs analogous to those described in Algorithm 5 and
determine a warm-up sample size nwarm for which convergence is validated.
Set ywarm and C warm to be the response vector and design matrix based on the first
nwarm observations. Then set yTy ← yT

warmywarm, CTy ← C T
warmywarm, CTC ← C T

warmC warm,
n ← nwarm.
Set the following matrices (with dimensions)[

βSMC

uSMC

]
(P × M ); σ 2

εSMC (1 × M ); aεSMC (1 × M ); σ 2
uSMC (r × M );

auSMC (r × M ) such that each column is a random sample from the relevant
approximate posterior distribution according to the batch Markov chain Monte Carlo
samples based on the first nwarm observations.
Cycle:

Read in ynew (1 × 1) and cnew (P × 1) ; n ← n + 1

η ←−
[

βSMC

uSMC

]T

cnew

� ←− � + (ynewη − 1
2 η � η)/{(σ 2

εSMC)
T } − 1

2 log{(σ 2
εSMC)

T }
p ←− exp{� − max(�)}/[1T exp{� − max(�)}]
If pT p > τ then⎡

⎢⎢⎢⎢⎢⎢⎣

βSMC

uSMC

σ 2
εSMC

aεSMC

σ 2
uSMC

auSMC

⎤
⎥⎥⎥⎥⎥⎥⎦

←− SYSTEMATICRESAMPLE

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

βSMC

uSMC

σ 2
εSMC

aεSMC

σ 2
uSMC

auSMC

⎤
⎥⎥⎥⎥⎥⎥⎦

, p

⎞
⎟⎟⎟⎟⎟⎟⎠

� ←− log
(
1/M

)
1

yTy ← yTy + y2
new ; CTy ← CTy + cnew ynew ; CTC ← CTC + cnew cT

new

For m = 1, . . . , M :

Ω ←− CTC
(σ 2

εSMC)m
+ blockdiag

(
Σ−1

β , I K1/(σ
2
uSMC)1m ,

. . . , I KR /(σ 2
uSMC)Rm

)
decompose Ω = U Ωdiag(dΩ)U T

Ω where U ΩU T
Ω = I

z ←− P × 1 vector containing totally independent N(0, 1) draws
continued on a subsequent page . . .
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14 ONLINE SEMIPARAMETRIC REGRESSION

Algorithm 6. continued

mth column of

[
βSMC

uSMC

]
←−

U Ω

⎡
⎣U T

Ωz√
dΩ

+
U T

Ω

{
CTy

/
(σ 2

εSMC)m + Σ−1
β μβ

}
dΩ

⎤
⎦

(aεSMC)m ∼ Inverse-Gamma
(
1, (σ 2

εSMC)
−1
m + s−1

ε

)
(σ 2

εSMC)m ∼ Inverse-Gamma

(
(n + 1)/2, (aεSMC)

−1
m

+(1/2)

{
yTy − 2

(
(CTy)T

[
βSMC

uSMC

])
m

+
([

βSMC

uSMC

]T

CTC
[

βSMC

uSMC

])
mm

})
istt ←− 1
For r = 1, . . . , R :

(auSMC)rm ∼ Inverse-Gamma
(
1, (σ 2

uSMC)
−1
rm + s−1

ur

)
iend ←− istt + Kr − 1
ω ←− entries istt to iend of the mth column of uSMC

istt ←− iend + 1
(σ 2

uSMC)rm ∼ Inverse-Gamma
(
(Kr + 1)/2, (auSMC)

−1
rm + 1

2‖ω‖2
)
.

Produce summaries based on the current approximate posterior distributions

of

[
β

u

]
, σ 2

ε and (σ 2
u1, . . . , σ 2

uR) equalling theprobability mass functions with

atoms stored in

[
βSMC

uSMC

]
, σ 2

εSMCσ
2
uSMC respectively, and probabilities p.

until data no longer available or analysis terminated.

for particular scalar-to-scalar functions b, c and h with the convention that function
evaluation is applied in an element-wise fashion. The logistic regression special case, for
binary response data, corresponds to

b(x) = log
(
ex + 1

)
, c(x) = 0 and h(x) = 1(x ∈ {0, 1}). (15)

Instead, setting

b(x) = ex , c(x) = − log(x !) and h(x) = 1(x ∈ {0,1,2, . . . }) (16)

corresponds to Poisson regression for count responses.
Online fitting of (14) is provided by Algorithm 7 and justified in Section S.2.6 of

Supporting Information. An important difference between Algorithm 7 for generalised linear
models and Algorithm 4 for Gaussian response linear models is that purely online fitting
is not being achieved. Recall that Algorithm 4 is such that the data can be discarded after

© 2025 Statistical Society of Australia.
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Algorithm 7. Online sequential Monte Carlo algorithm for online approximate inference
in the generalised response linear model.

Tuning Parameter Inputs (defaults): M ∈ N (1000) ; τ > 0 (2/M ) ; υ > 0 (see
Section 4.1.1).
Hyperparameter Inputs: μβ (p × 1), Σβ (p × p) symmetric and positive definite.
Perform batch-based tuning runs analogous to those described in Algorithm 5 and
determine a warm-up sample size nwarm for which convergence is validated.
Set ywarm and X warm to be the response vector and design matrix based on the first nwarm

observations. Then set n ←− nwarm, y ←− ywarm and X ←− X warm.
Cycle:

Read in ynew(1 × 1) and x new(p × 1) ; n ←− n + 1
η ←− βT

SMCx new ; � ←− � + ynewη − b(η)

p ←− exp{� − max(�)}/[1T exp{� − max(�)}]
If pT p > τ then

βSMC ←− SYSTEMATICRESAMPLE
(
βSMC, p

)
; � ←− log

(
1/M

)
1

y ←−
[

y

ynew

]
; X ←−

[
X

xT
new

]
For m = 1, . . . , M :

z ←− p × 1 vector containing totally independent N(0, 1) draws

βSMC,m ←− mth column of βSMC ; βRW ←− βSMC,m + υz√
n

ηSMC ←− XβSMC,m ; ηRW ←− XβRW

λ ←− yT (ηRW − ηSMC) − 1T {b(ηRW) − b(ηSMC)}
− 1

2βT
RWΣ−1

β βRW + 1
2βT

SMC,mΣ−1
β βSMC,m + (βRW − βSMC,m)T Σ−1

β μβ

u ←− draw from the Uniform(0, 1) distribution
if λ > log(u) then

mth column of βSMC ←− βRW

Produce summaries based on the current approximate posterior distribution
of β equalling the probability mass functions with atoms stored in βSMC and
probabilities p.

until data no longer available or analysis terminated.

each sufficient statistic update is accomplished. In contrast, Algorithm 7 is such that, every
time a new data vector arrives, the full data to date need to be available and processed for
the approximate posterior distribution updates. The essence of this difference is the non-
Gibbsian nature of the β vector full conditional distribution in the generalised response
situation. Instead of the simple closed-form update that arises in the Gaussian case, a
Metropolis–Hastings scheme has to be called up. The logarithm of Metropolis–Hastings
ratio, denoted in Algorithm 7 by λ, requires the full data to date.

© 2025 Statistical Society of Australia.



16 ONLINE SEMIPARAMETRIC REGRESSION

4.1.1. Choice of the Metropolis–Hastings random walk scale parameter

Algorithm 7 involves the following step:

βRW ← βSMC,m + υz√
n

(17)

for some choice of the scale parameter υ > 0. As explained in Section S.2.6 of Supporting
Information, (17) corresponds to drawing from random walk proposal distribution as part
of a Metropolis–Hastings scheme for obtaining a draw from the current full conditional
distribution of β.

Several strategies to select υ have been developed. Sophisticated approaches such
as the Metropolis-adjusted Langevin algorithm (Roberts & Stramer 2003) introduce also
a deterministic drift and exploit gradient information to provide principled choices of
υ, which can be further refined by considering higher order derivatives (Girolami &
Calderhead 2011). Fearnhead & Taylor (2013) were among the first to bring ideas from
adaptive MCMC to bear in the context of SMC; they suggested the adaptation of υ

based on the expected squared jumping distance, see also Bon, Lee & Drovandi (2021).
Maximising the expected squared jumping distance is equivalent to minimising the first-
order autocorrelation of the Markov chain, and computation is straightforward. Section
17.2.1 of Chopin & Papaspiliopoulos (2020) recommends the use of an estimate of the
sample covariance from the previous step of SMC to calibrate the covariance matrix of a
general multivariate Gaussian proposal. However, despite the potential for these approaches
to deliver improved mixing, they can also introduce novel failure modes. For example, the
expected squared jumping distance may not be concave as υ is varied, which means that
optimisation could, in principle, be difficult. To promote robustness, here we use a simpler
approach, based on theoretical results in Roberts & Rosenthal (2001). This entails choosing
υ so that about 23% of the particles are updated according to the Algorithm 7 step:

if λ > log(u) then the mth column of βSMC ← βRW (m = 1, . . . , M ).

The ‘about 23% of particles updated’ approach to setting υ values can be done using
the warm-up phase, and also involve simple-to-implement adaptations to υ as the data
stream in. The illustrations in Sections 5.1 and 5.2 use such an approach for choice of υ.

4.2. Generalised linear mixed models

The class of Bayesian generalised linear mixed models that we consider is

p(y|β, u) = exp
{
y�(Xβ + Zu) − 1�(Xβ + Zu) + 1�c(y)

}
h(y),

u|σ 2
u1, . . . ,σ 2

uR ∼ N
(
0, blockdiag

(
σ 2

u1IK1 , . . . ,σ 2
uRIKr

))
, (18)

where β and σ 2
ur, 1 ≤ r ≤ R, have prior distributions as given by (11). Model (18) has

similar utility to (10) for various semiparametric regression scenarios, but for generalised
response situations. In particular, logistic mixed models and Poisson mixed models
correspond to the b, c and h functions given by (15) and (16), respectively.

Algorithm 8 describes online fitting of (18) via SMC, with justification provided
by Section S.2.7 of Supporting Information. An illustration of Algorithm 8 is given in
Section 5.2.
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Algorithm 8. Online sequential Monte Carlo algorithm for approximate inference in the
generalised linear mixed model (18).

Tuning Parameter Inputs (defaults): M ∈ N (1000); τ > 0 (2/M ) ; υ (see Section∼4.1.1).
Hyperparameter Inputs: μβ (p × 1), Σβ (p × p) symmetric and positive definite, sur > 0,
1 ≤ r ≤ R.
Perform batch-based tuning runs analogous to those described in Algorithm 5 and
determine a warm-up sample size nwarm for which convergence is validated.
Set ywarm and C warm to be the response vector and design matrix based on the first nwarm

observations.
Set the following matrices (with dimensions)[

βSMC

uSMC

]
(P × M ) ; σ 2

uSMC (r × M ) ; auSMC (r × M )

such that each column is a random sample from the relevant approximate posterior
distribution according to the batch Markov chain Monte Carlo samples based on the
first nwarm observations.
Cycle:

Read in ynew (1 × 1) and cnew (P × 1) ; n ← n + 1

η ←−
[

βSMC

uSMC

]T

cnew ; � ←− � + ynewη − b(η)

p ←− exp{� − max(�)}/[1T exp{� − max(�)}]
If pT p > τ then⎡

⎢⎢⎣
βSMC

uSMC

σ 2
uSMC

auSMC

⎤
⎥⎥⎦ ←− SYSTEMATICRESAMPLE

⎛
⎜⎜⎝
⎡
⎢⎢⎣

βSMC

uSMC

σ 2
uSMC

auSMC

⎤
⎥⎥⎦ , p

⎞
⎟⎟⎠

� ←− log
(
1/M

)
1

y ←−
[

y

ynew

]
; C ←−

[
C

cT
new

]
For m = 1, . . . , M :

z ←− P × 1 vector containing totally independent N(0, 1) draws[
βSMC

uSMC

]
m

←− mth column of

[
βSMC

uSMC

]
[

βRW

uRW

]
←−

[
βSMC

uSMC

]
m

+ υz√
n

ηSMC ←− C
[

βSMC

uSMC

]
m

; ηRW ←− C
[

βRW

uRW

]
λ ←− yT (ηRW − ηSMC) − 1T {b(ηRW) − b(ηSMC)}

−(1/2)βT
RWΣ−1

β βRW + 1
2βT

SMC,mΣ−1
β βSMC,m

+ (βRW − βSMC,m)T Σ−1
β μβ

continued on a subsequent page . . .
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Algorithm 8. continued

istt ←− iend + 1

λ ←− λ − 1
2

(‖ωSMC‖2 − ‖ωRW‖2
)/

(σ 2
uSMC)rm

u ←− draw from the Uniform(0, 1) distribution
if λ > log(u) then

mth column of

[
βSMC

uSMC

]
←−

[
βRW

uRW

]

istt ←− 1
For r = 1, . . . , R :

(auSMC)rm ∼ Inverse-Gamma
(
1, (σ 2

uSMC)
−1
rm + s−1

ur

)
iend ←− istt + Kr − 1
ω ←− entries istt to iend of the mth column of uSMC

istt ←− iend + 1
(σ 2

uSMC)rm ∼ Inverse-Gamma
(
(Kr + 1)/2, (auSMC)

−1
rm + 1

2‖ω‖2
)
.

Produce summaries based on the current approximate posterior distributions of[
β

u

]
and (σ 2

u1, . . . , σ 2
uR) equalling the probability mass functions with atoms

stored in

[
βSMC

uSMC

]
and σ 2

uSMC respectively, and probabilities p.

until data no longer available or analysis terminated.

5. Illustrations

We have tested Algorithms 4–8 on many simulated and actual datasets. In this section
we give some illustrations of the practical performance of the new methodology. The first
one includes a comparison with the Luts, Broderick & Wand (2014) variational approach.

5.1. Online logistic regression

Algorithm 5 of Luts, Broderick & Wand (2014) offers real-time logistic regression
with pure online updating based on the logistic log-likelihood variational approximations
of Jaakkola & Jordan (2000). However, as we mentioned in Section 1, this online MFVB
approach to logistic regression is susceptible to poor accuracy. This problem, as well as
the online SMC remedy, is illustrated here via a simple linear logistic regression scenario.

Suppose that new predictor/response pairs (xnew, ynew) are generated according to

xnew ∼ Uniform(0, 1), ynew | xnew ∼ Ber
(

expit
(
β0,true + β1,true xnew

))
(19)

where β0,true = −7.5 and β1,true = 9.36. Of interest here are the posterior density functions
of the coefficient parameters

p
(
β0 | xcurr, ycurr

)
and p

(
β1 | xcurr, ycurr

)
© 2025 Statistical Society of Australia.
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Figure 2. Comparison of the approximations of p
(
β1 | xcurr, ycurr

)
for the online logistic regression

example. The batch Markov Chain Monte Carlo (MCMC) approximation is displayed as a frequency
polygon density estimate based on a kept MCMC sample of size 1,000 and bin width given by
(S.11). The online sequential Monte Carlo (SMC) approximation is displayed as a frequency polygon
representation of a probability mass function with 1,000 atoms, as defined in Section S.2.8 of
Supporting Information, and same bin width as the MCMC frequency polygon. The online mean-
field variational Bayes (MFVB) approximations, corresponding to Algorithm 5 of Luts, Broderick &
Wand (2014), are Normal density functions. The dashed vertical line corresponds to β1, true = 9.36.

where xcurr and ycurr are the current predictor and response vectors as the data stream in
according to

n ← n + 1, xcurr ← (xcurr, xnew) and ycurr ← (
ycurr, ynew

)
.

We warmed up both Algorithm 7 of the present paper and Algorithm 5 of Luts,
Broderick & Wand (2014) with a sample size of n warm = 100 and terminated at
n = 500. As a ‘gold standard’ we also obtain the batch MCMC fits to each of the
n = 100, 101, . . . , 500 datasets using the package rstan (Guo et al. 2023) within the R
computing environment (R Core Team 2024). A Movie S1 in Supporting Information
displays and compares the approximations of p

(
β0 | xcurr, ycurr

)
and p

(
β1 | xcurr, ycurr

)
.

Figure 3 shows four frames of the movie for n ∈ {200, 300, 400, 500} and the parameter
β1. The approximations to the p

(
βj | xcurr, ycurr

)
based on batch MCMC and online SMC are

displayed using frequency polygons, as described in Section S.2.8 of Supporting Information
with bin width rule (S.11). The online MFVB approximations are Normal density functions.

Figure 2 and its extended movie form show that online SMC leads to very good
approximation of the posterior distributions of β0 and β1. In contrast, online MFVB provides
overly narrow posterior density function approximations for this example.
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Figure 3. The computing times and their ratios for the Figure 3 example. In each panel, the horizontal
axis corresponds to the sample size in the online fitting phase. In the upper panels, the vertical axis
corresponds to number of seconds required for online fitting and inference after the warm-up phase;
the axis limits are the same to aid visual comparison. The lower left panel is a zoomed view of the
upper right panel’s curve. The vertical axis in the lower right panel corresponds to computing time
ratios.

A price to be paid for SMC’s improved accuracy is slowness (higher computing
time). Figure 3 conveys this cost when running the relevant algorithms in the R computing
environment (R Core Team 2024) on the third author’s MacBook Air laptop, which has
a 3.2 GHz processor and 16 gigabytes of random access memory. The jaggedness in the
Figure 3 curves is due to rounding. It takes SMC about 2.75 s to get from n = 100 to
n = 500, whereas MFVB takes only 0.01 s. The Figure 3 curves show the times and their
ratios for getting from n = 100 to intermediate sample sizes. The SMC computing times
appear to be quadratic in sample size, while the MFVB times are linear. The ‘lightning
fast’ aspect of the online MFVB needs to be traded off against it being prone to inaccurate
inference, as Figure 2 demonstrates.

5.2. Online binary response nonparametric regression

This second simulated data illustration involves extension of (19) to

xnew ∼ Uniform(0, 1), ynew | xnew ∼ Ber (ftrue (xnew)) (20)

© 2025 Statistical Society of Australia.



MARIANNE MENICTAS, CHRIS J. OATES AND MATT P. WAND 21
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Figure 4. Batch-based convergence diagnostics for the binary response nonparametric regression
example. The solid lines track posterior means, while the dashed lines show the limits of the
corresponding 95% credible intervals. First row: the horizontal axes correspond to sample sizes
between a warm-up batch sample of size nwarm = 100 and validation samples up to nvalid = 100
greater than nwarm. Second row: as for the first row, but with nwarm = 500.

for a smooth function ftrue such that 0 ≤ ftrue(x) ≤ 1 for x ∈ (0, 1). In this section’s
illustrations we have

ftrue(x) = {
1.05 − 1.02x + 0.018x2 + 0.4φ(x ; 0.38,0.08) + 0.08φ(x; 0.75,0.03)

}
/2.7

where φ(·;μ, σ) denotes the density function of the N
(
μ, σ 2

)
distribution.

Online estimation and inference concerning ftrue can be achieved using the R = 1
version of Algorithm 8 with the current X and Z matrices set to

X =

⎡
⎢⎣

1 x1
...

...

1 xn

⎤
⎥⎦ and Z =

⎡
⎢⎣

z1 (x1) · · · zK (x1)
...

. . .
...

z1 (xn) · · · zK (xn)

⎤
⎥⎦ (21)

where {zk (·) : 1 ≤ k ≤ K } is a suitable spline basis such as described in Section 4 of Wand
& Ormerod (2008). The C matrix appearing in Algorithm 8 is then given by C = [X Z].
For this example we have K = 37.

With the online SMC particles having a dimension of around 40, we found that
a substantial batch-based warm-up was required. This aspect is conveyed by Figure 4,
which compares the diagnostic plots corresponding to the generalised linear mixed-model
extension of Algorithm 5 for nwarm = 100 and nwarm = 500. It is apparent from Figure 4
that the lower warm-up sample size is not adequate and one around five times larger is
desirable for good online estimation and inference for f true. An analogous phenomenon
was observed for the online MFVB approach used by Luts, Broderick & Wand (2014), with
Figure 5 of that article showing that nwarm = 100 is inadequate for a similar model. Since the
updates occur in a high-dimensional Euclidean space, and the mixing properties of random
walk Metropolis–Hastings algorithms deteriorate in a manner inversely proportional to the
dimension of the distribution being sampled (Gelman, Gilks & Roberts 1997), the starting
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Figure 5. Comparison of online sequential Monte Carlo and batch Markov chain Monte Carlo
inference for the probability function ftrue in the binary response nonparametric regression example for
four example sample sizes from the Movie S2 in Supporting Information. The solid curves correspond
to the posterior mean, which is targeting the true probability function shown as a dot-dashed curve.
The dashed curves correspond to pointwise 95% credible intervals.

values corresponding to lower nwarm are more susceptible to divergence away from the
correct posterior distributions.

A Movie S2 in Supporting Information of this article displays and compares the online
SMC and batch MCMC estimates, and variability, bands of ftrue. Figure 5 displays four
frames of this movie for the sample sizes n ∈ {1000, 2000, 3500, 5000}. There is very
good correspondence between the online and batch fits.

5.3. Illustration for actual data

To illustrate the methodology on actual data, we applied Algorithm 6 for online additive
model fitting to sequentially arriving data from the data frame SydneyRealEstate
within the R package HRW (Harezlak, Ruppert & Wand 2021). The data consist of
numerical attributes of 37,676 houses sold in Sydney, Australia, during 2001. The response
variable is the natural logarithm of sale price in Australian dollars. After conversion of
categorical variables to indicator variables, there are around 40 candidate predictors. Most of
the candidate predictors are continuous and could impact the mean response either linearly
or nonlinearly. Given that this is just an illustration, we first ran the full data through the
generalised additive model selection procedure provided by the R package gamselBayes
(He & Wand 2023) and arrived at 12 predictors entering the model linearly and 14 predictors
entering the model nonlinearly. Table 1 describes each of these 26 predictors. Fuller details
are provided in the documentation of SydneyRealEstate within the HRW package.
For the Bayesian model fitting, all variables were linearly transformed to the unit interval
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Table 1. Predictors used in the online additive model fitting illustration for real estate data for houses
sold in Sydney, Australia, during 2001

Predictors entering linearly Predictors entering nonlinearly

Degrees longitude Lot size
Distance to nearest highway Degrees latitude
Distance to harbour tunnel Inflation rate measure
Nitric oxide level Average income of suburb
Suspended matter level Distance to nearest bus stop
Ozone level Distance to nearest park
Particulate matter < 10 micrometres Distance to nearest main road
Sodium dioxide level Distance to nearest sealed road
Distance to nearest medical services Distance to nearest unsealed road
Indicator sale in 2nd quarter Proportion of foreigners in suburb
Indicator sale in 3rd quarter Distance to nearest ambulance
Indicator sale in 4th quarter Distance to nearest factory

Distance to nearest hospital
Distance to nearest school

and approximate non-informativity was imposed through the use of the hyperparameter
choices μβ = 0, �β = 1010I and sε = sur = 105. For the upcoming graphical summaries,
all posterior distributions were back-transformed to correspond to the original units. The
spline basis functions for each predictor are analogous to those given by (21) but with
K = 17.

Algorithm 6 was warmed up with a batch MCMC fit to the first n = 1000 fields
of SydneyRealEstate. This was followed by online additive model updating for
sequentially arriving data based on the next 4000. For comparison, we then obtained
the batch fits for each of the n ∈ {1000, 1010, 1020, . . . , 5000} datasets. A Movie S3
in Supporting Information shows the online additive model fits and compares them with
their batch counterparts. Figure 6 shows the n = 3000 frame of the movie. In both the
movie and Figure 6, the approximate posterior density functions of the coefficients for the
linear effect predictors are displayed using frequency polygons as described in Section S.2.8
of Supporting Information. The nonlinear effect plots correspond to slices of fitted surface
with all other predictors set to their median values. The solid curves show posterior means
and the dashed curves show pointwise 95% credible intervals. Both the movie and Figure 6
demonstrate online Bayesian inference via Algorithm 6 essentially matching the results
from successive batch analyses.

6. Concluding remarks

We have demonstrated that SMC provides a viable approach to online, or real-
time, semiparametric regression that overcomes the accuracy shortcomings of the MFVB
approach. Our algorithms facilitate straightforward implementation in a wide range
of semiparametric regression settings. For generalised response models and particular
applications, some modifications concerning the Metropolis–Hastings steps may be worth
considering. We have provided the foundations upon which such modifications could be
carried out. Extensions to more elaborate models can also be entertained, with the current
article as a solid basis.
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Figure 6. Comparison of online sequential Monte Carlo and batch Markov Chain Monte Carlo
inference for the additive model fits to the Sydney real estate data for a sample size of n = 3000. The
frequency polygon plots correspond to approximate posterior density functions of the coefficients for
predictors entering the model linearly. The subsequent panels show the estimates of the nonlinear
effects for predictors entering the model nonlinearly. The solid curves are posterior means, with each
other predictor set to its median value. The dashed curves are pointwise 95% credible intervals.
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Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs.

Movie S1. MOWlogisRegn.mov: Comparison of the online sequential Monte Carlo, the
online mean-field variational Bayes and the batch Markov Chain Monte Carlo approaches
for the logistic regression example described in Section 5.1. For each sample size from
100 to 500, the movie shows the approximate posterior density functions of the intercept
and slope parameters according each of the three approaches. The true values are shown
as vertical dashed lines.

Movie S2. MOWbinNPR.mov: Comparison of the online sequential Monte Carlo and
the batch Markov Chain Monte Carlo approaches for the binary response nonparametric
regression example described in Section 5.2. For each sample size from 500 to 5000, the
movie shows the posterior means as solid curves, which are targeting the true probability
function shown as a dot-dashed curve. The dashed curves correspond to pointwise 95%
credible intervals.

Movie S3. MOWaddModSydReaEst.mov: Comparison of the online sequential Monte
Carlo and the batch Markov Chain Monte approaches for the example described in
Section 5.3, concerned with online additive model fitting of the Sydney real estate data. The
movie shows and compares Bayesian inferential summaries for sample sizes from 1000 to
5000. The frequency polygon plots correspond to approximate posterior density functions
of the coefficients for predictors entering the model linearly. The subsequent panels show
the estimates of the nonlinear effects for predictors entering the model nonlinearly. The
solid curves are posterior means, with each other predictor set to its median value. The
dashed curves are pointwise 95% credible intervals.

Document S1 Supplemental Material.
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