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ABSTRACT
We derive streamlined mean field variational Bayes algorithms for fitting linear mixed models with crossed
random effects. In the most general situation, where the dimensions of the crossed groups are arbitrarily
large, streamlining is hindered by lack of sparseness in the underlying least squares system. Because of this
fact we also consider a hierarchy of relaxations of the mean field product restriction. The least stringent
product restriction delivers a high degree of inferential accuracy. However, this accuracy must be mitigated
against its higher storage and computing demands. Faster sparse storage and computing alternatives
are also provided, but come with the price of diminished inferential accuracy. This article provides full
algorithmic details of three variational inference strategies, presents detailed empirical results on their pros
and cons and, thus, guides the users on their choice of variational inference approach depending on the
problem size and computing resources. Supplementary materials for this article are available online.
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1. Introduction

Linear mixed models with crossed random effects are a useful
vehicle for analysis and inference for data that are cross-
classified according to two or more grouping mechanisms.
One major application area is psychometrics in which a cohort
of subjects is assessed according to a set of tasks or items
(e.g., Baayen, Davidson, and Bates 2008; Jeon, Rijmen, and
Rabe-Hesketh 2017). The assessment scores are cross-classified
according to subject and item. In such studies it is common for
both the subjects and items to be treated as random samples
from relevant populations. For example, in a psycholinguistic
study, the subjects may be a random sample from the population
of native Greek speakers and the items may be a random sample
from the population of Greek language syllables. Other variables
such as gender and stimuli type may be treated as nonrandom.
Mixed models with crossed random effects for subject and item
and fixed effects for variables of interest facilitate inference for
Greek speakers and the Greek language in general rather than
for the participants and syllables chosen for the study. Other
areas of psychometrics such as item response theory and Rasch
analysis (e.g., Doran et al. 2007) benefit from crossed random
effects models. The essence of this contribution is streamlined
variational inference for crossed random effects mixed models
that scales well to the handling of very large datasets.

The term “streamlined” refers to the process of taking advan-
tage of sparse structures within the design matrices that arise
in linear mixed models. The design matrices are often very
sparse and potentially extremely large. Clever algorithms that
recognize and make use of the sparseness patterns can lead to

CONTACT Marianne Menictas mmenictas@gmail.com Harvard University, Department of Statistics, Cambridge, MA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

dramatic savings in terms of storage and computing time. Nolan
et al. (2020) provides a systematic treatment of streamlined
variational inference for linear mixed models with two and three
levels of nesting. The group specific curves extension is dealt
with in Menictas et al. (2021). In these articles, each involving
the first and third authors of the current article, it was recog-
nized that key variational inference updates can be embedded
with the class of two-level sparse least squares problems (Nolan
and Wand 2020) and that this algorithmic component can be
isolated into a procedure that we call SolveTwoLevelSparse-
LeastSquares. This procedure also arises in our variational
inference algorithms for crossed random effects in Section 4.
Also, Nolan et al. (2020) and Menictas et al. (2021) are con-
cerned with nested random effects models whilst this article
treats the crossed random effects situation. The former situation
is less challenging since higher level nesting invokes hierarchi-
cal sparsity structures that are amenable to streamlined fitting
strategies. These strategies are fully efficient in terms of only
using the nonzero entries of the design matrices. For crossed
random effects the sparsity structure, if present, is more delicate.
Depending on the restrictiveness of the variational approach
and the cross-tabulation variable sizes, the cross random effects
sparseness structure may not be amenable to fully efficient
fitting and inference.

Throughout this article we consider two grouping mech-
anisms with group dimensions m and m′. Furthermore, we
label the groups in such a way that m ≥ m′. For example, a
psycholinguistic study involving 900 subjects and 40 items has
group sizes m = 900 and m′ = 40. If a different study involved
75 subjects and 80 items then the (m, m′) labeling is reversed

© 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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with respect to subjects and items and our notation is m = 80
items and m′ = 75 subjects. Sticking with the m ≥ m′ notation
is important, since it affects variational inference algorithm
construction and choice. For example, if m′ is moderate in size
and m is very large then the least squares system that underlies
the least stringent (most accurate) variational inference scheme
is sparse, and streamlined computing advantages are available.
On the other hand, if m′ is also very large then the least strin-
gent algorithm is non-sparse and, depending on computing
resources and run-time demands, more stringent (less accurate)
variational inference schemes may be preferred.

The variational Bayesian inference paradigm is becoming
quite a powerful one in contemporary statistical and machine
learning contexts (e.g., Blei et al. 2017). Modularization variants
such as variational message passing (Winn and Bishop 2005;
Wand 2017) have allowed for the development of versatile and
fast inference engines such as Edward (Tran et al. 2016) and
Infer.NET (Minka et al. 2018). Various options concerning the
stringency of mean field-type product restrictions allow for scal-
ability to very large problems with speed being traded off against
accuracy. All algorithms presented here are purely matrix alge-
braic and require no root-finding or numerical integration. Our
variational inference algorithm with medium product restric-
tions is able to handle hundreds of crossed random effects in
tens of seconds on contemporary laptop computers.

The use of variational approximations for crossed random
effects mixed models is an emerging activity and, to date,
there are only a few contributions of this type. The most
prominent such contribution is Jeon, Rijmen, and Rabe-Hesketh
(2017) which applied the notions of Gaussian variational
approximation to frequentist generalized linear mixed models
with crossed random effects. Jeon, Rijmen, and Rabe-Hesketh
(2017) concentrated on the scalar effects case and also imposed
a product restriction between the “item” and “subject” random
effects. Our algorithms, which are for approximate Bayesian
inference, allow for this restriction to be removed albeit at
the cost of increased storage and computation. We also focus
on the Gaussian response here and give a thorough treatment
of this more straightforward case. Semiparametric mean field
variational Bayes ideas (e.g., Nolan and Wand 2017) facilitate
extension to other likelihoods.

In Section 2 we define a general class of Gaussian response
Bayesian crossed random effects linear mixed models. Sections 3
and 4 form the centerpiece of the article and explain various
mean field variational Bayes strategies, followed by listings of
algorithms that facilitate streamlined implementation. In Sec-
tion 5 we report on the results of simulation-based numerical
studies that assess and compare the performances of these new
algorithms with respect to inferential accuracy and computing
time. Section 6 contains an illustration for data from a large lon-
gitudinal education study. We summarize our findings in Sec-
tion 7. The supplementary materials contains derivational and
related details. Some results for frequentist inference for crossed
random effects are also given in the supplementary materials.

2. Bayesian Crossed Random Effects Linear Mixed
Models

The Bayesian crossed random effects linear mixed models being
considered here are such that:

yii′ |β , ui, u′
i′ , σ

2 ind.∼ N(Xii′β + Zii′ui + Z′
ii′u

′
i′ , σ

2I),
ui|� ind.∼ N(0, �), 1 ≤ i ≤ m, u′

i′ |�′ ind.∼ N(0, �′),
1 ≤ i′ ≤ m′, β ∼ N(μβ , �β).

(1)

The matrices in (1) have dimensions as follows:
yii′ is nii′ × 1, Xii′ is nii′ × p, β is p × 1,

Zii′ is nii′ × q, ui is q × 1, Z′
ii′ is nii′ × q′, u′

i′ is q′ × 1,
� is q × q and �′ is q′ × q′.

(2)
Here nii′ is the number of response measurements in the (i, i′)th
cell. If nii′ = 0 then each of yii′ , Xii′ , Zii′ and Z′

ii′ are null.
However, for upcoming matrix assembly operations it is useful
to think of, Zii′ , for example, as an nii′ ×q “matrix” with nii′ = 0.

To aid digestibility of (1) and (2), consider a generic educa-
tion research study where a sample of m students is followed lon-
gitudinally and have academic performances measured accord-
ing to m′ items, such as those which quantify cognitive, literary
and numeracy abilities. The items take the form of exercises and,
for each item, a quantitative score is determined from a student’s
performance in that item’s exercises. Over the duration of the
multi-year study each of the m students are scored on the m′
items n times, which implies that nii′ = n for all 1 ≤ i ≤ m and
1 ≤ i′ ≤ m′. Define scoreii′j to be the jth score of student i for
item i′. Let ageii′j be defined analogously, corresponding to age
in years. Lastly, define trainii′j to be the indicator of whether
the ith student received training prior to their jth attempt at the
i′th item. Then a p = 3 and q = q′ = 2 version of the response
vector and design matrices is

yii′ = [
scoreii′j

]
1≤j≤n, Xii′ = [

1 ageii′j trainii′j
]

1≤j≤n,

Zii′ = [
1 ageii′j

]
1≤j≤n

with Z′
ii′ = Zii′ . According to (1) and this set-up, the scores of

the ith student on the i′th item are modeled to be
yii′j|β0, β1, β2, u0i, u1i, u′

0i′ , u′
1i′ , σ

2

ind.∼ N
(
(β0 + u0i + u′

0i′) + (β1 + u1i + u′
1i′)ageii′j

+β2trainii′j, σ 2), 1 ≤ j ≤ n.

Conditional on �, the [u0i u1i]T are N(0, �) random vectors.
The [u′

0i′ u′
1i′ ]T are similar with �′ instead of �. It is apparent

from this that model (1) allows for a different intercept and slope
for every subject/item combination. The heterogeneities in the
intercepts and slopes correspond to appropriate entries of �

and �′. If the fixed effect β2 is of primary interest then (1) is a
parsimonious model that allows for subject/item heterogeneities
in the age effects.

For the error variance σ 2 and the random effects covariance
matrices � and �′ we consider two prior distribution families:

(A) ordinary Inverse-Wishart priors
(B) the marginally non-informative priors proposed in

Huang and Wand (2013).
In terms of the Inverse Chi-squared and Inverse-G-Wishart dis-
tributional notation given in Section S.1 of the supplementary
materials, prior specification (A) involves:

σ 2 ∼ Inverse-χ2(ξσ 2 , λσ 2),
� ∼ Inverse-G-Wishart(Gfull, ξ� , ��),
�′ ∼ Inverse-G-Wishart(Gfull, ξ�′ , ��′)

(3)
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for hyperparameters ξσ 2 , λσ 2 > 0, ξ� > 2(q − 1), ξ�′ > 2(q′ −
1) and symmetric positive definite matrices �� and ��′ . Prior
specification (B) involves:

σ 2|aσ 2 ∼ Inverse-χ2(νσ 2 , 1/aσ 2),
aσ 2 ∼ Inverse-χ2(1, 1/(νσ 2 s2

σ 2)),
�|A� ∼ Inverse-G-Wishart(Gfull, ν� + 2q − 2, A−1

� ),
�′|A�′ ∼ Inverse-G-Wishart(Gfull, ν�′ + 2q′ − 2, A−1

�′ ),
A� ∼ Inverse-G-Wishart(Gdiag, 1, �A� ),

�A� ≡
{
ν�diag(s2

�,1, . . . , s2
�,q)

}−1

A�′ ∼ Inverse-G-Wishart(Gdiag, 1, �A�′ ),

�A�′ ≡
{
ν�′diag(s2

�′,1, . . . , s2
�′,q′)

}−1

(4)
for hyperparameters νσ 2 , ν� , ν�′ , s2

�,1, . . . , s2
�,q, s2

�′,1, . . . , s2
�′,q′

> 0. As explained in Huang and Wand (2013), such priors allow
standard deviation and correlation parameters to have arbitrary
non-informativeness.

2.1. Additional Data Matrices

The various streamlined mean field variational Bayes algorithms
given in Section 4 benefit from the setting up of additional
data matrices in which the raw data in yii′ , Xii′ , Zii′ and Z′

ii′
are combined in various ways using “stack” and “blockdiag”
operators. These operators are defined as follows:

stack
1≤i≤d

(Mi) ≡
⎡
⎢⎣

M1
...

Md

⎤
⎥⎦ and

blockdiag
1≤i≤d

(Mi) ≡

⎡
⎢⎢⎢⎣

M1 O · · · O
O M2 · · · O
...

...
. . .

...
O O · · · Md

⎤
⎥⎥⎥⎦

for matrices M1, . . . , Md. The first of these definitions require
that Mi, 1 ≤ i ≤ d, each have the same number of columns.
For the null design matrices that may arise in crossed random
effects models it is convenient to adopt generalizations of regular
matrix manipulations. If one of the Mi is n × p where n = 0
and p > 0 then it is ignored by the stack operator. However,
for the blockdiag operator the column index should have an
increment of p before adding the next matrix. This subtledy is
fully explained in Section S.2 of the supplementary materials.
To appreciate the motivation for the “stack” and “blockdiag”
notation, consider the intercepts-only special case where p =
q = q′ = 1, m = m′ = 2 and nii′ = 1 for i, i′ = 1, 2. Then the
full set of conditional means is contained in the vector

⎡
⎢⎢⎣

β0 + u01 + u′
01

β0 + u01 + u′
02

β0 + u02 + u′
01

β0 + u02 + u′
02

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

β0
u01
u02
u′

01
u′

02

⎤
⎥⎥⎥⎥⎦ .

(5)
Note that the design matrix in (5) can be written as[

14 blockdiag
1≤i≤2

12 stack
1≤i≤2

I2
]

.

where 1d denotes the d×1 vector of ones and Id is the d×d iden-
tity matrix. It is apparent from this example that such notation is
very useful for handling cross random effects design structures.
The remainder of this section allows for similar organization
of the response and predictor data and greatly aids succinct
algorithmic description, which involve various full conditional
distributions.

Our first set of additional data matrices is

�y i≡ stack
1≤i′≤m′(yii′),

�
Xi≡ stack

1≤i′≤m′(Xii′), 1 ≤ i ≤ m,

and

�y i′≡ stack
1≤i≤m

(yii′),
�
Xi′≡ stack

1≤i≤m
(Xii′), 1 ≤ i′ ≤ m′.

Next define

�
Zi ≡ stack

1≤i′≤m′(Zii′),
�
Z′

i≡ blockdiag
1≤i′≤m′

(Z′
ii′), 1 ≤ i ≤ m, and

�
Z′

i′ ≡ stack
1≤i≤m

(Z′
ii′), 1 ≤ i′ ≤ m′.

Also, we define

y ≡ stack
1≤i≤m

{
stack

1≤i′≤m′ (yii′)
}

= stack
1≤i≤m

(
�y i),

X ≡ stack
1≤i≤m

{
stack

1≤i′≤m′ (Xii′)
}

= stack
1≤i≤m

(
�
Xi)

and

Z ≡
[

blockdiag1≤i≤m(
�
Zi) stack1≤i≤m(

�
Z′

i)

]
.

2.2. Additional Dimensional Notation

The dimensions of the data matrices defined in Section 2.1 are
such that the following notation is useful:

ni• ≡
m′∑

i′=1
nii′ , 1 ≤ i ≤ m,

n•i′ ≡
m∑

i=1
nii′ , 1 ≤ i′ ≤ m′, and

n•• ≡
m∑

i=1

m′∑
i′=1

nii′ .

3. Variational Inference

The joint conditional density function of all parameters in (1)
with covariance priors (3) is

p(β , u, u′, σ 2, �, �′|y). (6)

where u ≡ (u1, . . . , um) and u′ ≡ (u′
1, . . . , u′

m′). Let

q(β , u, u′, σ 2, �, �′) (7)
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be a mean field approximation of (6). Several product restric-
tions can be placed on the q-density function in (7). Here we
consider three such restrictions:

q(β , u, u′, σ 2, �, �′)

=
⎧⎨
⎩
q(β)q(u)q(u′)q(σ 2, �, �′), labeled product restriction I,
q(β , u)q(u′)q(σ 2, �, �′), labeled product restriction II,
q(β , u, u′)q(σ 2, �, �′), labeled product restriction III.

(8)

Product restriction I has the simplest streamlined implemen-
tation but it sets all posterior correlations between β , u and u′
to zero and, thus, produces posterior distributions with overly
small variances. On the other hand, product restriction III
allows for joint posterior covariance matrix of (β , u, u′) in its
q-density to be full—which leads to higher inferential accuracy
but more challenging computing that can only be streamlined
if m′ is moderate. Product restriction II is a halfway house
that recognizes the m ≥ m′ asymmetry and carries posterior
correlations between β and u, which is the larger of u and
u′ assuming that q and q′ have similar sizes. It delivers more
accurate inference than product restriction I but with similar
computational overhead.

It should be noted that (8) conveys the product restrictions
in their minimal forms. However, conditional independencies
inherent in (1) mean that additional factorizations ensue as
follows:

q(β , u, u′, σ 2, �, �′)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(β)

{ m∏
i=1

q(ui)

}⎧⎨
⎩

m′∏
i′=1

q(u′
i′)

⎫⎬
⎭

×q(σ 2)q(�)q(�′), for product
restriction I,

q(β , u)

⎧⎨
⎩

m′∏
i′=1

q(u′
i′)

⎫⎬
⎭q(σ 2)q(�)q(�′),

for product
restriction II,

q(β , u, u′)q(σ 2)q(�)q(�′), for product
restriction III.

If, instead, the Huang and Wand (2013) priors are used then
conditional independencies inherent in (4) lead to the covari-
ance matrix and auxiliary variables component of the joint q-
density factorizing fully as follows:

q(σ 2, aσ 2 , �, A� , �′, A�′) = q(σ 2)q(aσ 2)q(�)q(A�)q(�′)q(A�′).

Under either product restrictions I, II, or III, and letting uall ≡
(u, u′), standard mean field variational Bayes steps (e.g., Bishop
2006, sec. 10.1–10.3) lead to the q-density functions of the
model parameters having the following forms:

q∗(β , uall) has a N
(
μq(β ,uall), �q(β ,uall)

)
distribution,

q∗(σ 2) has an Inverse-χ2(ξq(σ 2), λq(σ 2)

)
distribution,

q∗(�) has an Inverse-G-Wishart(Gfull, ξq(�)
, �q(�))

distribution
and q∗(�′) has an Inverse-G-Wishart(Gfull, ξq(�′) , �q(�′))

distribution.

The q-density parameters can be obtained using a coordinate
ascent iterative algorithm (e.g., Algorithm 1 of Ormerod and

Table 1. The zero (O) versus nonzero (×) status of various sub-blocks of the
q(β , uall) covariance matrix �q(β ,uall) under product restrictions I, II, and III.

sub-blocks of �q(β ,uall) prod. res. I prod. res. II prod. res. III

�q(β) , �q(ui) , �q(u′
i′ )

× × ×
Eq{(β − μq(β))(ui − μq(ui))

T } O × ×
Eq{(β − μq(β))(u′

i′ − μq(u′
i′ )

)T } O O ×
Eq{(ui − μq(ui))(u′

i′ − μq(u′
i′ )

)T } O O ×
all other sub-blocks O O O

NOTE: The i subscript ranges over 1, . . . , m and the i′ subscript ranges over
1, . . . , m′ .

Wand (2010). However, if applied naïvely, the matrix �q(β ,uall)

requires storage and inversion. As explained in the upcoming
Section 3.1, this matrix is potentially prohibitively large. Product
restrictions I, II, and III lead to streamlined mean field vari-
ational Bayes algorithms with varying degrees of storage and
computational overhead.

3.1. The �q(β,uall) Matrix and Product Restriction
Implications

The square matrix �q(β ,uall) has (p + mq + m′q′)2 entries.
Therefore, a version of the Section 2 education study exam-
ple involving 10, 000 students is such that �q(β ,uall) has more
than 400 million entries. However, product restrictions I, II,
and III impose sparseness structures on �q(β ,uall), which are
summarized in Table 1. Section 4 is concerned with deriving
streamlined mean field variational Bayes fitting and inference
algorithms according to each of the three product restrictions.
Table 1 provides a roadmap for the nature of the required results.

Under product restriction I, only the diagonal sub-blocks of
�q(β ,uall) given by Table 1 are nonzero. These sub-blocks only
have a total of p2 + q2m + (q′)2m′ entries. A mean field vari-
ational Bayes algorithm that takes advantage of this sparseness
will scale well to very large problems.

For product restriction II there are an additional pqm
nonzero entries in �q(β ,uall) due to the Eq{(β − μq(β))(ui −
μq(ui))

T} contributions. The number of nonzero entries is still
linear in m and m′, but the sparsity structure is more delicate.
The upcoming Result 1 is concerned with efficient approximate
inference when such structure is present.

Product restriction III is particularly mild, but involves an
additional pq′m′ + q′m′qm potentially nonzero entries in the
�q(β ,uall) matrix. If m′ is moderately sized then a type of sparse-
ness arises. Result 2 in the next section is motivated by this
situation.

4. Streamlined Variational Inference

Variational inference for σ 2, �, and �′ is relatively straight-
forward and only moderately affected by the type of product
restriction on the effects parameters. However, there are distinct
differences among the product restrictions for updating the
parameters in q(β , uall) so these are treated separately in each
of the next three sections. After that we treat the variance and
covariance matrices component of the model.
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4.1. Streamlined Variational Inference for (β, uall) Under
Product Restriction I

Under product restriction I the variational inference updates
are relatively simple and can be done using standard mean field
arguments. The derivational details are given in Section S.3 of
the supplementary materials.

Given current values of the q-density parameters of σ 2, u,
and u′ the updates for the q(β) parameters are:

b ←−
⎡
⎢⎣μ

1/2
q(1/σ 2)

[
y − stack

1≤i≤m

{
stack

1≤i′≤m′

(
Zii′μq(ui) + Z′

ii′μq(u′
i′ )
)}]

�
−1/2
β

μβ

⎤
⎥⎦

B ←−
⎡
⎣ μ

1/2
q(1/σ 2)

X

�
−1/2
β

⎤
⎦ ;

S ←− SolveLeastSquares
(
{b, B}

)
μq(β) ←− x component of S ;
�q(β) ←− (BTB)−1 component of S

(9)
where the SolveLeastSquares algorithm is given by Algo-

rithm S.2 in Section S.4 of the supplementary materials. Then,
given the current values of the q-density parameters of β , u′,
σ 2 and � the updates for the parameters of the q(ui), 1 ≤ i ≤
m, have similar expressions involving the SolveLeastSquares
algorithm. The updates for q(u′

i′), 1 ≤ i′ ≤ m′, are analogous.
The full set of updates is provided by Algorithm 1.

4.2. Streamlined Variational Inference for (β, uall) Under
Product Restriction II

Under product restriction II the updates for the q(u′
i′) param-

eters are the same as those for product restriction I. However,
streamlined updating of the q(β , uall) parameters is more del-
icate. The problem can be embedded within the class of two-
level sparse matrix problems as defined in Nolan and Wand
(2020) and is encapsulated in Result 1. Note that Result 1 uses
matrix sub-block notation given by (S.2) in Section S.5 of the
supplementary materials. The derivation of this result is given
in Section S.6 of the supplementary materials of this article.

Result 1. According to product restriction II, the mean field
variational Bayes updates of μq(β ,uall) and each of the sub-blocks
of �q(β ,uall) listed in the first row of Table 1, given the current
values of μq(u′

i′ )
, 1 ≤ i′ ≤ m′, are expressible as a two-level

sparse matrix least squares problem of the form:∥∥b − Bμq(β ,uall)

∥∥2

where b and the nonzero sub-blocks of B, according to the
notation in (S.1) of the supplementary materials, are, for 1 ≤
i ≤ m,

bi ≡

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

{ �y i − stack
1≤i′≤m′

(
Z′

ii′μq(u′
i′ )
)}

m−1/2�
−1/2
β μβ

0

⎤
⎥⎥⎦ ,

Bi ≡

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Xi

m−1/2�
−1/2
β

O

⎤
⎥⎥⎦

and

•
Bi≡

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Zi

O
M1/2

q(�−1)

⎤
⎥⎥⎦ ,

with each of these matrices having ñi = ni• + p + q rows. The
solutions are

μq(β) = x1, �q(β) = A11

and

μq(ui) = x2,i, �q(ui) = A22,i,
Eq{(β − μq(β))(ui − μq(ui))

T} = A12,i, 1 ≤ i ≤ m,

where the x1, x2,i, A11, A22,i, and A12,i notation is given by (S.2)
of the supplementary materials.

Result 1 gives rise to Algorithm 2, which provides the
full set of updates of the q(β , uall) parameters under prod-
uct restriction II. Note that Algorithm 2 makes use of the
SolveTwoLevelSparseLeastSquares algorithm from Nolan
et al. (2020) and reproduced for convenience in Section S.5 of
the supplementary materials.

4.3. Streamlined Variational Inference for (β, uall) Under
Product Restriction III

Product restriction III is such that sparse least squares systems
do not arise naturally in the same way as product restrictions I
and II or the nested random effects models treated in Lee and
Wand (2016) and Nolan et al. (2020).

Result 2 embeds the updates of the q(β , uall) parameters
within the class of two-level sparse matrix problems as defined
in Nolan and Wand (2020) and summarized in Section S.5 of the
supplementary materials. The updates are valid for any values
of m and m′. If m′ is moderate in size but m is possibly very
large then the system is efficient in the sense that the amount of
storage and computing is linear in m.

Result 2. According to product restriction III, the mean field
variational Bayes updates of μq(β ,uall) and each of the sub-blocks
of �q(β ,uall) in the first four rows of Table 1 is expressible as a
two-level sparse matrix least squares problem of the form:∥∥b − Bμq(β ,uall)

∥∥2

where b and the nonzero sub-blocks of B, according to the
notation in (S.1) of the supplementary materials, are, for 1 ≤
i ≤ m,

bi ≡

⎡
⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�y i

m−1/2�
−1/2
β μβ

0
0

⎤
⎥⎥⎥⎦ ,

Bi ≡

⎡
⎢⎢⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Xi μ

1/2
q(1/σ 2)

�
Z′

i
m−1/2�

−1/2
β O

O m−1/2
(

Im′ ⊗ M1/2
q((�′)−1)

)
O O

⎤
⎥⎥⎥⎥⎥⎦
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Algorithm 1 Mean field variational Bayes algorithm for updating the parameters of q(β , uall) under product restriction I.

Data Inputs: (y, X), {(�y i,
�
Xi,

�
Zi) : 1 ≤ i ≤ m}, {(�y i′ ,

�
Xi′ ,

�
Z′

i′) : 1 ≤ i′ ≤ m′},
{(Zii′ , Z′

ii′) : 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′}
Hyperparameter Inputs: μβ(p × 1), �β(p × p) symmetric and positive definite,
q-Density Inputs: μq(ui), 1 ≤ i ≤ m, μq(u′

i′ )
, 1 ≤ i′ ≤ m′, μq(1/σ 2), Mq(�−1)(q × q),

Mq((�′)−1)(q′ × q′) both symmetric and positive definite.

b ←−
⎡
⎣ μ

1/2
q(1/σ 2)

[
y − stack

1≤i≤m

{
stack

1≤i′≤m′

(
Zii′μq(ui) + Z′

ii′μq(u′
i′ )
)}]

�
−1/2
β μβ

⎤
⎦

B ←−
[

μ
1/2
q(1/σ 2)

X
�

−1/2
β

]
; S ←− SolveLeastSquares

(
{b, B}

)

μq(β) ←− x component of S ; �q(β) ←− (BTB)−1 component of S
For i = 1, . . . , m:

b ←−
⎡
⎣ μ

1/2
q(1/σ 2)

{ �y i − �
Xi μq(β) − stack

1≤i′≤m′

(
Z′

ii′μq(u′
i′ )
)}

0

⎤
⎦

B ←−
⎡
⎣ μ

1/2
q(1/σ 2)

�
Zi

M1/2
q(�−1)

⎤
⎦ ; S ←− SolveLeastSquares

(
{b, B}

)
μq(ui) ←− x component of S ; �q(ui) ←− (BTB)−1 component of S

For i′ = 1, . . . , m′:

b ←−
⎡
⎣ μ

1/2
q(1/σ 2)

{ �y i′ − �
Xi′ μq(β) − stack

1≤i≤m

(
Zii′μq(ui)

)}
0

⎤
⎦

B ←−
⎡
⎣ μ

1/2
q(1/σ 2)

�
Z′

i′

M1/2
q((�′)−1)

⎤
⎦ ; S ←− SolveLeastSquares

(
{b, B}

)
μq(u′

i′ )
←− x component of S ; �q(u′

i′ )
←− (BTB)−1 component of S

Outputs: μq(β), �q(β),
{(

μq(ui), �q(ui)
)

: 1 ≤ i ≤ m
}

,
{(

μq(u′
i′ )

, �q(u′
i′ )
)

: 1 ≤ i′ ≤ m′
}

and
•
Bi≡

⎡
⎢⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Zi

O
O

M1/2
q(�−1)

⎤
⎥⎥⎥⎥⎦

with each of these matrices having ni• + p + m′q′ + q rows and
with Bi having p + m′q′ columns and

•
Bi having q columns. The

solutions are, with sub-matrix labeling of x and A−1 according
to (S.2) in the supplementary materials,

μq(β) = first p rows of x1,
�q(β) = top left p × p sub-block of A11,
stack

1≤i′≤m′(μq(u′
i′ )

) = subsequent (m′q′) × 1 entries of

x1 following μq(β),

Eq{(β − μq(β))(u′
i′ − μq(u′

i′ )
)T} = subsequent p × q′

sub-blocks of A11 to the right of �q(β),

�q(u′
i′ )

= subsequent q′ × q′ diagonal sub-blocks of A11

following �q(β), 1 ≤ i′ ≤ m′,
μq(ui) = x2,i, �q(ui) = A22,i,
Eq{(β − μq(β))(ui − μq(ui))

T} = first p rows of A12,i

and stack
1≤i′≤m′

(
[Eq{(ui − μq(ui))(u′

i′ − μq(u′
i′ )

)T}]T
)

= remaining m′q′ rows of A12,i, 1 ≤ i ≤ m,

where the x1, x2,i, A11, A22,i, and A12,i notation is given by (S.2)
of the supplementary materials.

Figure 1 provides visualization of the strategy used by
Result 2. For simplicity, the values of p, q, q′ and nii′ are
all set to 1 and m′ is set to 2. Each panel shows an image
plot representation of the matrix B according to the sparse
two-level form given by (S.1) of the supplementary materials
but with the Bi and

•
Bi sub-blocks specific to Result 2. The

white regions correspond to the two-level sparsity due to
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Algorithm 2 Mean field variational Bayes algorithm for updating the parameters of q(β , uall) under product restriction II.

Data Inputs: {(�y i,
�
Xi,

�
Zi) : 1 ≤ i ≤ m}, {(�y i′ ,

�
Xi′ ,

�
Z′

i′) : 1 ≤ i′ ≤ m′},
{(Zii′ , Z′

ii′) : 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′}
Hyperparameter Inputs: μβ(p × 1), �β(p × p) symmetric and positive definite.
q-Density Inputs: μq(u′

i′ )
, 1 ≤ i′ ≤ m′, μq(1/σ 2), Mq(�−1)(q × q),

Mq((�′)−1)(q′ × q′) both symmetric and positive definite.
For i = 1, . . . , m:

bi ←−

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

{ �y i − stack
1≤i′≤m′

(
Z′

ii′μq(u′
i′ )
)}

m−1/2�
−1/2
β μβ

0

⎤
⎥⎥⎦ ; Bi ←−

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Xi

m−1/2�
−1/2
β

O

⎤
⎥⎥⎦

•
Bi←−

⎡
⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Zi

O
M1/2

q(�−1)

⎤
⎥⎥⎦

S ←− SolveTwoLevelSparseLeastSquares
({

(bi, Bi,
•
Bi) : 1 ≤ i ≤ m

})
μq(β) ←− x1 component of S ; �q(β) ←− A11 component of S
For i = 1, . . . , m:

μq(ui) ←− x2,i component of S ; �q(ui) ←− A22,i component of S
Eq{(β − μq(β))(ui − μq(ui))

T} ←− A12,i component of S

For i′ = 1, . . . , m′:

b ←−
⎡
⎣ μ

1/2
q(1/σ 2)

{ �y i′ − �
Xi′ μq(β) − stack

1≤i≤m

(
Zii′μq(ui)

)}
0

⎤
⎦

B ←−
⎡
⎣ μ

1/2
q(1/σ 2)

�
Z′

i′

M1/2
q((�′)−1)

⎤
⎦ ; S ←− SolveLeastSquares

(
{b, B}

)
μq(u′

i′ )
←− x component of S ; �q(u′

i′ )
←− (BTB)−1 component of S

Outputs: μq(β), �q(β),
{(

μq(ui), �q(ui)
)

: 1 ≤ i ≤ m
}

,
{(

μq(u′
i′ )

, �q(u′
i′ )
)

: 1 ≤ i′ ≤ m′
}

,{
Eq{(β − μq(β))(ui − μq(ui))

T : 1 ≤ i ≤ m
}

the block diagonal positioning of the
•
Bi, 1 ≤ i ≤ m. The

grey regions also indicate entries, and have additional block
diagonal formations, but which do not contribute to the two-
level sparsity. For moderate m′ and large m the black/grey block
on the left is small relative to the remainder of the matrix.
The SolveTwoLevelSparseLeastSquares algorithm, listed
as Algorithm S.3 in Section S.5 of the supplementary materials,
affords efficient calculation of the variational inference updates
for m potentially very large.

An interesting future research problem concerns taking
advantage of the sparseness apparent in the grey regions of
the B matrices displayed in Figure 1. This is a much more
subtle pattern of sparseness compared with the two-level sparse
structure corresponding to the white regions in Figure 1 and
accounting for it would require significant additional algebraic
analysis.

Algorithm 3 is a proceduralization of Result 2 and delivers
the full set of updates of the q(β , uall) parameters under product
restriction III.

4.4. Variational Inference for σ 2, � and �′

Given the current values of the q(β , uall) parameters, the
updates of the parameters of q(σ 2), q(�) and q(�′) are relatively
simple. For example, σ 2 has the Inverse χ2 prior as given by
(3) then standard mean field variational Bayes arguments (e.g.,
Bishop 2006, sec. 10.1–10.3) lead to ξq(σ 2) = ξσ 2 + n•• and

λq(σ 2) = λσ 2 + Eq‖y − Xβ − Zuall‖2

= λσ 2 + ‖y − Xμq(β) − Zμq(uall)‖2

+tr
([X Z]�q(β ,uall)

)
.
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Figure 1. Image plot representation of the two-level sparse matrix B with generic form given by (S.1) of the supplementary materials and with sub-blocks as defined in
Result 2. The dimension variables are p = q = q′ = nii′ = 1, m ∈ {2, 5, 10} and m′ = 2. Black indicates nonzero entries of B. White indicates zero entries corresponding
to the diagonal blocks sparsity structure of B. The gray regions also correspond to zero entries but which do not contribute to two-level sparse structure.

Under product restriction I the trace term reduces to

tr
{[X Z]T[X Z] �q(β ,uall)

} =
m∑

i=1

m′∑
i′=1

{
tr(XT

ii′Xii′�q(β))

+ tr(ZT
ii′Zii′�q(ui))

+ tr(Z′T
ii′ Z′

ii′�q(u′
i′ )

)
}

.
For product restrictions II and III additional terms are present
due to nonzero cross-expectations and is reflected in the λq(σ 2)
updates in Algorithm 4 given in the next section.

The updates for the parameters of q(�) and q(�′) uses
analogous arguments, and this is also reflected in the �q(�) and
�q(�′) updates of Algorithm 4.

4.5. Full Streamlined Mean Field Variational Algorithm

We are now ready to list a full streamlined mean field variational
inference algorithm, listed as Algorithm 4, that accounts for
any of product restrictions I, II, or III. It also allows for the
covariance matrix prior specification to be (3) or (4).

Throughout this article we confine discussion to the Gaus-
sian response version of the linear mixed model with crossed
random effects. Item response theory and Rasch analysis mod-
els, which enjoy widespread use in psychometrics, have ran-
dom effects structures similar to those given by (1). They usu-
ally involve different conditional response distributions such
as those corresponding to multivariate binary and multivariate
categorical data. However, the streamlined variational inference
challenges arising in random effect structures are independent
of the likelihood. The variational message passing approach
to variational inference (e.g., Wand 2017; Nolan et al. 2020)
formalizes this separation via notions such as factor graph frag-
ments. The upshot is that Results 1 and 2 are still relevant
to non-Gaussian crossed random effects models such as the
psychometrics versions just mentioned.

5. Performance Assessment and Comparison

Any set of statistical methods for a particular problem can be
assessed and compared on various criteria such as ease of imple-
mentation, time to compute and various measures of statistical

accuracy. In this section we focus on accuracy in terms of how
close variational approximate posterior density functions are to
their exact counterparts and computational speed. The second
of these assessments and comparisons allows appreciation for
the scalability of competing approaches to very large mixed
models with crossed random effects.

5.1. Accuracy Assessment and Comparison

We ran a simulation study to compare and assess the accu-
racy performance of the three mean field variational inference
schemes. The study involved simulating 100 replications of data
from a version of the crossed random effects model (1). The
dimension variables were set to be:

m = 100, m′ = 20, nii′ = 10, and p = q = q′ = 2.

The true values of the parameters from which the data were
generated are

β true =
[

0.58
1.89

]
, σ 2

true = 0.3, �true =
[

0.46 −0.19
−0.19 0.17

]
, and

�′
true =

[
0.3 −0.12

−0.12 0.25

]
. (10)

Each of the Xii′ , Zii′ , Z′
ii′ , 1 ≤ i ≤ 100, 1 ≤ i′ ≤ 20, were 10 × 2

matrices with a column of ones and a column of predictor values
generated to be independent and uniformly on the unit interval.

The priors on σ 2, � and �′ were of (4). The hyperparameter
values were μβ = 0, �β = 1010I, νσ 2 = 1, ν� = ν�′ = 2 and
sσ 2 = s�,1 = s�,2 = s�′,1 = s�′,2 = 105.

For each replication we obtained approximate posterior den-
sity functions for all model parameters and random effects using
both mean field variational Bayes and Markov chain Monte
Carlo. The mean field variational Bayes approximations were
obtained by running Algorithm 4 with each of product restric-
tions I, II, and III. The number of iterations was fixed at 500.
Markov chain Monte Carlo approximate density functions were
obtained using the package rstan (Stan Development Team
2021) within the R language (R Core Team 2019). One thou-
sand warm-up samples were generated, followed by another
1000 samples retained for approximate inference. Kernel density
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Algorithm 3 Mean field variational Bayes algorithm for updating the parameters of q(β , uall) under product restriction III.

Data Inputs:
{(�y i,

�
Xi,

�
Zi,

�
Z′i

)
: 1 ≤ i ≤ m

}
Hyperparameter Inputs: μβ(p × 1), �β(p × p) symmetric and positive definite,
q-Density Inputs: μq(1/σ 2) > 0, Mq(�−1)(q × q), Mq((�′)−1)(q′ × q′) symmetric and positive definite.
For i = 1, . . . , m:

bi ←−

⎡
⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�y i

m−1/2�
−1/2
β μβ

0
0

⎤
⎥⎥⎥⎦ ; Bi ←−

⎡
⎢⎢⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Xi μ

1/2
q(1/σ 2)

�
Z′

i
m−1/2�

−1/2
β O

O m−1/2
(

Im′ ⊗ M1/2
q((�′)−1)

)
O O

⎤
⎥⎥⎥⎥⎥⎦

•
Bi←−

⎡
⎢⎢⎢⎢⎣

μ
1/2
q(1/σ 2)

�
Zi

O
O

M1/2
q(�−1)

⎤
⎥⎥⎥⎥⎦ .

S ←− SolveTwoLevelSparseLeastSquares
({

(bi, Bi,
•
Bi) : 1 ≤ i ≤ m

})
μq(β) ←− first p rows of x1 component of S
�q(β) ←− top left p × p sub-block of A11 component of S
istt ←− p + 1
For i′ = 1, . . . , m′:

iend ←− istt + q′ − 1
μq(u′

i′ )
←− sub-vector of x1 component of S with entries istt to iend

�q(u′
i′ )

←− diagonal sub-block of A11 component of S with rows istt to iend

and columns istt to iend

Eq{(β − μq(β))(u′
i′ − μq(u′

i′ )
)T} ←− sub-block of A11 component of S with

rows 1 to p and columns istt to iend

istt ←− iend + 1

For i = 1, . . . , m:

μq(ui) ←− x2,i component of S ; �q(ui) ←− A22,i component of S
Eq{(β − μq(β))(ui − μq(ui))

T} ←− sub-matrix of A12,i component of S with rows 1 to p

� ←− A12,i component of S ; istt ←− p + 1
For i′ = 1, . . . , m′:

iend ←− istt + q′ − 1
Eq{(ui − μq(ui))(u′

i′ − μq(u′
i′ )

)T} ←− sub-matrix of �T with columns istt to iend

istt ←− iend + 1

Outputs: μq(β), �q(β),
{(

μq(ui), �q(ui)
)

: 1 ≤ i ≤ m
}

,
{(

μq(u′
i′ )

, �q(u′
i′ )
)

: 1 ≤ i′ ≤ m′
}

,{
Eq{(β − μq(β))(ui − μq(ui))

T : 1 ≤ i ≤ m
}

,
{

Eq{(β − μq(β))(u′
i′ − μq(u′

i′ )
)T : 1 ≤ i′ ≤ m′

}
,{

Eq{(ui − μq(ui))(u′
i′ − μq(u′

i′ )
)T} : 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′

}

estimation, with direct plug-in bandwidth selection (e.g., Wand
and Jones 1995, sec. 3.6.1), was used to obtain approximate
posterior density functions.

Figure 2 compares the approximations for the posterior
distributions of the two entries of β . We denote these entries
as β0, the fixed effects intercept, and β1, the fixed effects slope.
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Algorithm 4 Mean field variational Bayes algorithm for determining the optimal q-density parameters in the Bayesian crossed random
effects model under either product restriction I, II or III.

Data Inputs: yii′ , Xii′ , Zii′ , Z′
ii′ , 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′.

Hyperparameter Inputs: μβ(p × 1), �β(p × p) symmetric and positive definite.
If priors (3): ξσ 2 , λσ 2 > 0, ξ� > 2(q − 1), ξ�′ > 2(q′ − 1),
�� , ��′ positive definite.
If priors (4): νσ 2 , sσ 2 , ν� , ν�′ , s�,1, . . . , s�,q, s�′,1, . . . , s�′,q′ > 0.

Product Restriction Input: Specification of product restriction I, II or III.
�y i←− stack

1≤i′≤m′(yii′),
�
Xi←− stack

1≤i′≤m′(Xii′),
�
Zi←− stack

1≤i′≤m′(Zii′), 1 ≤ i ≤ m.

If product restriction III then:
�
Z′

i←− blockdiag
1≤i′≤m′

(Z′
ii′), 1 ≤ i ≤ m

If product restriction I or II then:
�y i′←− stack

1≤i≤m
(yii′),

�
Xi′←− stack

1≤i≤m
(Xii′),

�
Z′

i′←− stack
1≤i≤m

(Z′
ii′), 1 ≤ i′ ≤ m′.

If product restriction I then: y ←− stack
1≤i≤m

(
�y i), X ←− stack

1≤i≤m
(
�
Xi).

If priors (3)

ξq(σ 2) ←− ξσ 2 + n•• ; ξq(�) ←− ξ� + m, ; ξq(�′) ←− ξ�′ + m′

If priors (4)

initialize: μq(1/aσ2 ) > 0, M
q(A−1

� ), M
q(A−1

�′ ) positive definite.
ξq(σ 2) ←− νσ 2 + n•• ; ξq(�) ←− ν� + 2q − 2 + m, ; ξ

q(�′
) ←− ν�′ + 2q′ − 2 + m′

ξq(aσ2 ) ←− νσ 2 + 1 ; ξq(A�) ←− ν� + q ; ξq(A�′ ) ←− ν�′ + q′

Initialize: μq(1/σ 2) > 0, Mq(�−1), Mq((�′)−1) positive definite.
Cycle:

If prod. restrict. I: call Algorithm 1 to update μq(β ,uall) and relevant �q(β ,uall) blocks
If prod. restrict. II: call Algorithm 2 to update μq(β ,uall) and relevant �q(β ,uall) blocks
If prod. restrict. III: call Algorithm 3 to update μq(β ,uall) and relevant �q(β ,uall) blocks
If priors (3): λq(σ 2) ←− λσ 2 ; �q(�) ←− �� ; �q(�′) ←− ��′
If priors (4): λq(σ 2) ←− μq(1/aσ2 ) ; �q(�) ←− M

q(A−1
� ) ; �q(�′) ←− M

q(A−1
�′ )

For i = 1, . . . , m:

For i′ = 1, . . . , m′:

λq(σ 2) ←− λq(σ 2) + ∥∥yii′ − Xii′μq(β) − Zii′μq(ui) − Z′
ii′μq(u′

i′ )
∥∥2

λq(σ 2) ←− λq(σ 2) + tr(XT
ii′Xii′�q(β)) + tr(ZT

ii′Zii′�q(ui)) + tr(Z′T
ii′ Z′

ii′�q(u′
i′ )

)

If product restriction II or III:
λq(σ 2) ←− λq(σ 2) + 2 tr

[
ZT

ii′Xii′Eq{(β − μq(β))(ui − μq(ui))
T}]

If product restriction III:
λq(σ 2) ←− λq(σ 2) + 2 tr

[
Z′T

ii′ Xii′Eq{(β − μq(β))(u′
i′ − μq(u′

i′ )
)T}]

λq(σ 2) ←− λq(σ 2) + 2 tr
[
Z′T

ii′ Zii′Eq{(ui − μq(ui))(u′
i′ − μq(u′

i′ )
)T}]

continued on a subsequent page . . .
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Algorithm 4 continued. This is a continuation of the description of this algorithm that commences on a preceding page.
For i = 1, . . . , m:

�q(�) ←− �q(�) + μq(ui)μ
T
q(ui)

+ �q(ui)

For i′ = 1, . . . , m′:

�q(�′) ←− �q(�′) + μq(u′
i′ )

μT
q(u′

i′ )
+ �q(u′

i′ )

μq(1/σ 2) ← ξq(σ 2)/λq(σ 2) ; Mq(�−1) ←− (ξq(�) − q + 1)�−1
q(�)

Mq((�′)−1) ←− (ξq(�′) − q′ + 1)�−1
q(�′)

If priors (4):

λq(aσ2 ) ←− μq(1/σ 2) + 1/(νσ 2 s2
σ 2) ; μq(1/aσ2 ) ←− ξq(aσ2 )/λq(aσ2 )

�q(A� ) ←− diag
{

diagonal
(
M

q(�−1
)

)}
+ {ν�diag(s2

�,1, . . . , s2
�,q)}−1

�q(A�′ ) ←− diag
{

diagonal
(
Mq((�′)−1)

)} + {ν�′diag(s2
�′,1, . . . , s2

�′,q′)}−1

M
q(A−1

� ) ←− ξq(A�)�
−1
q(A�) ; M

q(A−1
�′ ) ←− ξq(A�′ )�

−1
q(A�′ )

Outputs: μq(β), �q(β),
{(

μq(ui), �q(ui)
)

: 1 ≤ i ≤ m
}

,
{(

μq(u′
i′ )

, �q(u′
i′ )
)

: 1 ≤ i′ ≤ m′
}

,

ξq(σ 2), λq(σ 2), ξq(�), �q(�), ξq(�′), �q(�′).

If product restriction II or III add:
{

Eq{(β − μq(β))(ui − μq(ui))
T : 1 ≤ i ≤ m

}
.

If product restriction III add:
{

Eq{(β − μq(β))(u′
i′ − μq(u′

i′ )
)T : 1 ≤ i′ ≤ m′

}
.

and
{

Eq{(ui − μq(ui))(ui′ − μq(u′
i′ )

)T} : 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′
}

.

Figure 2. Approximate posterior density functions for β0 and β1, according to three different mean field variational Bayes (MFVB) schemes and Markov chain Monte Carlo
(MCMC), for the first replication of the simulation study. The legend uses the abbreviation “MFVB I” for the mean field variational Bayes according to product restriction I.
Similar abbreviations are used for the other product restrictions.

The difference between the three variational approximations is
quite striking. For product restriction I the posterior variances
are much too low, due to posterior correlations between the
entries of β , u and u′ being set to zero. However, the product
restriction III leads to very good concordance with the Markov
chain Monte Carlo posterior densities. The density functions for
product restriction II have intermediate approximation quality,
but appear to be closer to those of product restriction III than
those of product restriction I.

In Figure 3 we provide a summary of the relative per-
formance of product restrictions I, II, and III for all model

parameters and entries of the first three ui and u′
i′ vectors using

side-by-side boxplots of estimates of the following accuracy
score for a generic target θ :

accuracy ≡ 100
{

1 − 1
2

∫ ∞

−∞
∣∣q(θ) − p(θ |y)

∣∣ dθ

}
%. (11)

Note that 0% ≤ accuracy ≤ 100% with a score of 100% if
q(θ) and p(θ |y) perfectly coincide and a score of 0% if there
have no overlapping mass. In practice p(θ |y) is replaced by a
kernel density estimate based on a large Markov chain Monte
Carlo sample. Depending on tractability, either q(θ) is available
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Figure 3. Side-by-side boxplots for the accuracy scores for 21 parameters and random effects from the simulation study, with accuracy defined according to (11). Each
panel corresponds to a separate parameter or random effect and contains side-by-side boxplots for product restrictions I, II, and III.

in closed form or it can be estimated from a large Monte Carlo
sample from the distribution corresponding to q(θ).

Apart from the fixed effects parameters β0 and β1 the param-
eters monitored in Figure 3 are the error standard deviation σ ,
the standard deviation and correlation parameters correspond-
ing to the random effects covariance matrix �:

σ1 ≡ √
(�)11, σ2 ≡ √

(�)22 and ρ ≡ (�)12/(σ1σ2)

and similar parameters for the random effects covariance matrix
�′. The random effects in Figure 3 have notation as given by

ui =
[

ui0
ui1

]
, 1 ≤ i ≤ 3, and u′

i′ =
[

ui′0
ui′1

]
, 1 ≤ i′ ≤ 3.

From Figure 3 we see that the biggest discrepancies across
the three product restrictions are for the fixed effects parame-
ters β0 and β1, which is in keeping with Figure 2. Inferential
accuracy for the covariance matrix parameters is very good for
all product restrictions and is excellent for product restriction
III. For the ui entries the accuracy of product restriction I is
lower due to its ignorance of the posterior correlations between
distinct ui vectors. Product restrictions II and III allow for
such correlation and excellent accuracy ensues. However, for
the u′

i′ vectors product restriction II sacrifices handling of the
corresponding posterior correlations and the drop in accuracy
is quite pronounced.

Since product restriction III is the clear winner in terms of
accuracy, we show the mean field variational Bayes approximate
density estimates for the product restriction in comparison with
Markov chain Monte Carlo for the first replication in Figure 4.
The parameters and random effects subsets are the same as
those used in Figure 3. Accuracy scores are also shown and, for
this dataset, is always 92% or higher. The boxplots in Figure 3
indicate that excellent accuracy is typical for this particular
simulation setting.

The excellent accuracy under product restriction III is tied
to the orthogonality between (β , u, u′) and (σ 2, �, �′) from
likelihood theory, h-likelihood theory and best prediction for
the frequentist version of (1). Section 3.1 of Menictas and Wand

(2013) provides a detailed account of this phenomenon for a
similar model. The approximately non-informative priors used
in this section’s empirical studies imply that the approximate
Bayesian inference is close to what would be obtained using fre-
quentist paradigms. Since the product density forms of product
restriction III separate orthogonal quantities, there is little loss
in accuracy compared with the unrestricted case. On the other
hand, there is no such orthogonality within the components of
(β , u, u′). Hence, product restrictions I and II pay a price for
imposing their product density constraints.

5.2. Speed Assessment and Comparison

We ran another simulation study that recorded computing times
for data generated according to the model as in the previous
section’s simulation study—but with increasing crossed random
effects dimensions. Specifically, the data were generated accord-
ing to (10) with nii′ = 10 but with

m ∈ {100, 200, 400, 800} and m′ = m/5.

We then simulated 10 replications of the data for each (m, m′)
combination and recorded the computational times for fitting
via mean field variational Bayes with product restrictions II and
III.

The mean field variational Bayes computations were per-
formed using Algorithm 4, with calls to Algorithms 2 and 3 as
well as Algorithms S.2 and S.3 of the supplementary materials.
All five algorithms were implemented in the fast Fortran 77
language. The number of mean field variational Bayes iterations
was fixed at 100. All computations were carried out on the
third author’s MacBook Air laptop, which has a 2.2 gigahertz
processor and 8 gigabytes of random access memory.

Table 2 lists the average and standard deviation times in
seconds.

Table 2 shows that mean field variational Bayes with product
restriction II scales very well to large crossed random effects
problems with less than a minute required for the largest
(m, m′) = (800, 160) case and less than 10 sec required for
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Figure 4. Approximate posterior density functions for the 21 parameters and random effects for the first replication of the simulation study. The blue curves are posterior
density functions obtained using mean field variational Bayes with product restriction III and the orange curves are based on Markov chain Monte Carlo. The accuracy
percentages are defined according to (11).
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Table 2. Average (standard deviation) time in seconds for each method, in the
speed assessment study.

(m, m′) MFVB II MFVB III

(100,20) 0.267 (0.0267) 4.93 (0.082)
(200,40) 1.44 (0.0996) 66.8 (1.40)
(400,80) 8.92 (0.587) 1130 (8.48)
(800,160) 54.7 (1.54) 21300 (41.0)

NOTE: “MFVB II” is short for the mean field variational Bayes according to product
restriction II and “MFVB III” is defined similarly.

the second largest (m, m′) = (400, 80) situation. The highly
accurate Mean field variational Bayes with product restriction
III computes in a few seconds for (m, m′) = (100, 20) and
about a minute for (m, m′) = (200, 40). But eventually it gets
affected by the quadratic dependence on (m, m′) and the average
computing time up to about 6 hr for (m, m′) = (800, 160),
which is about 400 times slower than for product restriction
II. As we have seen in Figure 3, the accuracy of product
restriction III is higher than that of product restriction II.
Despite their limitation to a few settings, Figure 3 and Table 2
provides valuable guidance regarding the accuracy versus run-
time trade-off for mean field variational Bayes approaches to
approximate inference for linear mixed models with crossed
random effects.

A more challenging problem is that of meaningful timing
comparisons with Markov chain Monte Carlo alternatives to
the Algorithms 1–4 streamlined mean field variational Bayes
strategies. First, there is the issue that the elapsed computation
time for mean field variational Bayes approach is governed by
the number of iterations, whereas for Markov chain Monte Carlo
approaches it is sample size. Ideally notions of convergence
could be used to arrive at comparable stopping rules. But this has
its own difficulties due to factors such as tolerance choice and
chain stickiness. The accuracy comparisons in Figures 2 and 4
involved the default Markov chain Monte Carlo implementation
used by the rstan package. For the first three sample size
pairs of Table 2 rstan, with warm-up and kept sample sizes
of 1000, required between 50 and 400 times the computational
time compared with mean field variational Bayes with product
restriction III and failed to compute for the fourth sample size
pair. However, it is well-known that general purpose Bayesian
inference engines such as rstan tend to be considerably slower
than fit-for-purpose code. We implemented the plain block
Gibbs sampling algorithm for model (1) in a low-level lan-
guage. As expected, this was much faster than rstan with respect
to number of draws per second. However, plain block Gibbs
sampling exhibited extremely poor mixing for the fixed effects
parameters with lag 1 autocorrelation values as high as 0.99.
For tests involving warm-up and kept sample sizes of 1000 the
effective sample size, according to the definition used by the
rstan package, was as low as 5 for the components of β . The
rstan effective sample sizes are much higher, typically by a
factor of 10 or more. This chain stickiness problem with plain
block Gibbs sampling implies a degradation in the quality of
its Bayesian inference which stymies fair timing comparisons.
Recent work by Papaspiliopoulos, Roberts, and Zanella (2020)
provided a theoretical explanation of the poor performance
of plain Gibbs sampling for cross random effects models and

proposed a remedy for models similar to (1). This new work may
lead to competitive scalable alternatives to this article’s stream-
lined mean field variational Bayes approaches for model (1).

5.3. Conclusions from Comparison Studies

Our first conclusion based on the studies described in this
section is that product restriction I should not be used for
streamlined variational inference since it is much less accurate
than product restriction II without any significant speed and
storage advantages. Even though the asymmetry of product
restriction II is slightly disconcerting, it is better to bear with it in
the interest of having the fixed effects posterior density functions
approximated more accurately.

The choice between product restrictions II and III depends
on the size of the problem, availability of computing resources
and the need for speed in the application at hand. If speed is
not important then product restriction III is preferable due to
its high inferential accuracy. Product restriction II is a fallback
for extremely large problems.

6. Illustration for Data From a Large Longitudinal
Education Study

We now provide illustration for data from the National Educa-
tion Longitudinal Study which was launched in the United States
in early 1988. Details of the study are given in Thurgood et al.
(2003). The data are publicly available from the U.S. National
Center for Education Statistics. Our illustration focuses on stu-
dents within their last 5 years of secondary education. The data
involve longitudinal measurements on 8564 students with each
student having his or her academic ability assessed according to
24 items. The full list of items is given in Table S.2 of the sup-
plementary materials and includes, for example, test scores in
reading, mathematics and science. All data scores are expressed
in percentage form. Other variables such as gender and parental
education levels were also recorded.

We did not conduct a full and thorough analysis of these data
and avoid exploring matters such as careful variable creation and
model selection. Instead, we consider an illustrative Bayesian
mixed model with a very large number of crossed random
effects.

The model we considered is, for 1 ≤ i ≤ 8, 442 and 1 ≤
i′ ≤ 24,

yii′ |β0, . . . , β5, ui0, ui1, u′
i′0, u′

i′1, σ 2

ind.∼ N
(
β0 + ui0 + u′

i′0 + (β1 + ui1 + u′
i′1)x1,ii′

+β2x2,ii′ + · · · + β5x5,ii′ , σ 2I
)

,[
ui0
ui1

] ∣∣∣� ind.∼ N(0, �),
[

u′
i′0

u′
i′1

] ∣∣∣�′ ind.∼ N(0, �′) (12)

where yii′ is the nii′ × 1 vector of scores for the ith student and
i′th item. The nii′ ×1 predictor vectors x1,ii′ , . . . , x5,ii′ are nii′ ×1
vectors containing measurements for the (i, i′)th student/item
pair on values of the variables x1, . . . , x5 which are defined as
follows:
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Figure 5. Fitted lines for 96 randomly chosen student/item pairs from the streamlined mean field variational Bayes analysis of data from the National Education Longitudinal
Study of 1988. The other predictors are set to their average values. The gray shading corresponds to pointwise 95% credible intervals.

x1 = year of study (either 1, 3 or 5),
x2 = indicator that the student is male,
x3 = indicator that the student spent at least 30 hr per

week on homework,
x4 = indicator that the student’s father has at least a high

school education, and

x5 = indicator that the student’s mother has at least a high
school education.

The priors were set to be

β0, . . . , β5
ind.∼ N(0, 1010), σ 2|aσ 2 ∼ Inverse-χ2(1, 1/aσ 2),

aσ 2 ∼ Inverse-χ2(1, 10−10),
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Figure 6. Approximate posterior means (solid dots) and 95% credible intervals (line segments) for β2, . . . , β5 for the mean field variational Bayes, with product restriction
III, fit of (12) to data from the National Education Longitudinal Study of 1988.

�|A� ∼ Inverse-G-Wishart
(
Gfull, 4, A−1

�

)
,

A� ∼ Inverse-G-Wishart(Gdiag, 1,
2

1010 I2),

�′|A�′ ∼ Inverse-G-Wishart
(
Gfull, 4, A−1

�′
)

and

A�′ ∼ Inverse-G-Wishart(Gdiag, 1,
2

1010 I2).

The response data was transformed to the unit interval for
Bayesian analysis with these priors. The parameters were then
back-transformed to match the original response scale. In addi-
tion, to make the Gaussian assumption more plausible, we only
considered fields with test scores between 1% and 99% inclusive.
We fit model (12) using mean field variational Bayes under
product restriction III with Fortran 77 implementation of Algo-
rithm 3 with 100 iterations. Again, we used the third author’s
MacBook Air laptop with its 2.2 gigahertz processor and 8
gigabytes of random access memory and the fit took just under
5 min.

Figure 5 shows 96 randomly chosen of the random line
year effects, corresponding to posterior means, with each of
x2, . . . , x5 fixed at their average values and the horizontal and
vertical ranges set to be the same for each panel. Shading cor-
responds to pointwise 95% credible intervals. Strong hetero-
geneity in the year effects across subject/item pairs is apparent,
although it should be noted that Figure 5 represents only about
0.05% of all such effects.

Figure 6 provides a graphical summary of the effects of
x2, . . . , x5. Each line segment corresponds to an approximate
95% credible interval for the corresponding coefficient. The
mean field variational Bayes posterior means are shown as solid
dots. For example, having a father with at least a high school
education leads to an elevation of about 5% in mean test score.
The homework and education-related predictors are seen to be
highly significant, whereas gender is not significant.

It is apparent from Figure 5 that inclusion of crossed ran-
dom effects that is crucial for well-grounded estimation and
inference concerning the fixed effects, provided by Figure 6.
An ordinary least squares analysis with the crossed random

effects omitted would ignore the pronounced heterogeneities
in the age effects and their subject/item interactions and result
in imprecise inference for the Figure 6 effects. Ordinary least
squares also ignores within-subject and within-item correla-
tions of the scores, whereas such correlations are accounted for
by model (1).

7. Conclusions

We have derived and evaluated three streamlined variational
inference algorithms for Gaussian response linear mixed models
with crossed random effects, with differing product restriction
stringencies. It is concluded that the most stringent algorithm,
labeled mean field variational Bayes with product restriction
I, should be eliminated from contention which leaves product
restriction II and product restriction III. Mean field variational
Bayes with product restriction II is shown to be scalable to very
large numbers of crossed random effects. Mean field variational
Bayes with product restriction III is less scalable but highly
accurate. Our numerical results provide valuable guidance for
use of our algorithms in terms of accuracy and run-time trade-
offs. For moderate problems product restriction III delivers fast
and accurate inference. For increasingly large problems, product
restriction II offers a scalable alternative.

Supplementary Materials

Supplementary materials for this article are online. Please go to www.
tandfonline.com/r/JCGS.
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