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Abstract

The focus of this thesis is on the development and assessment of mean field variational

Bayes (MFVB), which is a fast, deterministic tool for inference in a Bayesian hierarchical

model setting. We assess the performance of MFVB via the use of comprehensive com-

parisons against a Markov chain Monte Carlo (MCMC) benchmark. Each of the models

considered are special cases of semiparametric regression. In particular, we focus on the

development and assessment of the performance of MFVB for heteroscedastic and longitu-

dinal semiparametric regression models. Generally, the new MFVB methodology performs

well in its assessment of accuracy against MCMC for the semiparametric and nonparamet-

ric regression models considered in this thesis. It is also much faster and is shown to be

applicable to real-time analyses. Several real data illustrations are provided. Altogether,

MFVB proves to be a credible inference tool and a good alternative to MCMC, especially

when analysis is hindered by time constraints.
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Chapter 1

Introduction

“Information is the oil of the 21st century & analytics is the

combustion engine”

- Peter Sondergaard, Senior Vice President, Gartner Research.

The rapid growth of information is one of the most challenging issues the world faces today.

To appreciate the degree by which an information revolution is under way, consider for

instance the Sloan Digital Sky Survey telescope in New Mexico, which in 2000, collected

more data in its first few weeks of operation than had been amassed in the entire history

of astronomy. An even more salient example is Facebook, having just celebrated its 10th

birthday, has more than 10 million photos uploaded every hour and a like button clicked

almost 3 billion times per day. This recent growth of information has become known as

the big data revolution and acts as the underlying motivation for this thesis. In some

instances, the amount of information has grown so much, that the volume being handled

no longer fits into standard computer memory. As a result, engineers need to re-develop

tools for analysing it all. This is the drive behind new data processing technologies such

as Map Reduce and Hadoop, which allows one to manage larger troves of data than ever

before.

In a similar vein, the pace of processing information in recent years has given impetus

for the development of faster data analysis techniques to replace conventional methods

that, however accurate, take much longer to run. Specifically, this thesis focuses on the

development and assessment of mean field variational Bayes (MFVB), which is a fast

alternative to Markov chain Monte Carlo (MCMC). These methods are considered in a

hierarchical Bayesian model setting, with comprehensive comparisons between the two

1



1.1. LITERATURE REVIEW

being a theme of this work. We commence our discussion by considering a review of the

literature surrounding MFVB.

1.1 Literature review

The Bayesian statistical literature is dominated by simulation-based approximations such

as MCMC. Since its emergence in Bayesian statistics in the 1990s, and its ensuing construc-

tion of the Bayesian inference engines BUGS (Bayesian inference Using Gibbs Sampling)

(Spiegelhalter et al., 2003) and Stan (Stan Development Team, 2014), MCMC has made

previously intractable inference problems solvable. When challenged with a new and pos-

sibly complex model that requires fitting and inference, the Bayesian analyst can choose

between at least two approaches: (a) to manually program MCMC using Metropolis-

Hastings and/or slice sampling as a way of dealing with arduous full conditional distribu-

tions; or (b) to implement the model in the BUGS inference engine by the simple press of

a button.

Albeit an extremely accurate inference tool, MCMC’s main setback from an applied

standpoint is the waiting time required for a program to run, sometimes taking days or

even weeks to get results. When considering applications that depend on speedy analysis,

such as speech recognition and robot vision, these times are unacceptably slow. A rapid

deterministic alternative to MCMC and Monte Carlo methods in general is the variational

approximation, which involves approximate inference for parameters in complex statistical

models. Let us next discuss variational approximations and their emergence into the

computer science and statistical literature.

1.1.1 Variational approximations

Variational approximations originate from the mathematical topic of variational calculus,

which has been part of the mathematical literature for over two centuries. Variational

calculus involves optimising a functional over a specified class of functions, somewhat

akin to the way in which a function can depend on a numerical variable. Variational

approximations arise when constraints are fixed on the specified class of functions, usually

to enforce tractability (e.g. Ormerod & Wand, 2010).

The posterior distribution of the model parameters is of primary interest in Bayesian

inference. However, even for relatively simple models, the derivation of the posterior

2



1.1. LITERATURE REVIEW

density can sometimes involve intractable integrals. As mentioned previously, our interest

lies in the achievement of faster inference for hierarchical Bayesian models. Specifically,

we are interested in providing a deterministic alternative to the stochastic MCMC by

combining the notions of Bayesian inference together with the variational approximation,

in order to approximate these previously intractable integrals. MFVB arises when the

variational approximation being used is subject to a specific factorisation, and is therefore,

limited in its approximation accuracy.

Variational approximations have made eye-catching appearances in the computer sci-

ence literature, where they have acted as the underlying methodology behind sophisticated

areas of research such as Markov random fields, error-control coding and language pro-

cessing (Jordan et al., 1999; Jordan, 2004). Comprehensive summaries of the variational

approximation may be found in Bishop (2006, Chapter 10) and Ormerod & Wand (2010).

What is lacking in the computer science literature, however, is research on the accuracy

of the variational approximation. This provides the statistical sciences an opportunity

to consolidate the existence of an accuracy assessment where we provide a quantitative

assessment of the performance of the variational approximation. Research into the quality

of the variational approximation has already manifested in statistical literature for spe-

cific models. For example, Wang & Titterington (2003) study the consistency properties

of variational Bayesian estimators for mixture models involving known densities. It was

shown that with probability 1, as the iterations approach infinity, the algorithm converges

locally to the maximum likelihood estimator. In addition, Wang et al. (2006) introduce

a general algorithm for computing variational Bayesian estimates and look into its con-

vergence properties for a normal mixture model. For a comprehensive listing of other

relevant literature on the accuracy of the variational approximation, Jordan (2004) and

Titterington (2004) discuss further sources.

The specific focus of this thesis therefore, is to provide an in-depth investigation into

a specific type of variational approximation, which we refer to as MFVB. The review of

the literature surrounding MFVB follows.

1.1.2 Mean field variational Bayes

Mean field variational Bayes (Wainwright & Jordan, 2008) involves Bayesian estimation

in graphical models, specifically catered to the variational posterior distribution restricted

3
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to a factorised form. It is one of the most common types of variational approximation

used today (Parisi, 1988). The use of MFVB has become more prevalent in the statistical

literature in the past decade. For example, Teschendorff et al. (2005) use MFVB as a

means of accurately categorising tumour types through gene-expression profiling. McGrory

& Titterington (2007) applied MFVB to the Bayesian analysis of mixtures of Gaussian

distributions. Further, in 2008, a MFVB-based software package named Infer.NET (Minka

et al., 2008) was developed. This allowed one to use MFVB on a wide range of statistical

problems, making MFVB more accessible than ever before.

In more recent years, MFVB has appeared in the Journal of the American Statistical

Association (Braun & McAuliffe, 2010; Faes et al., 2011), exposing MFVB to a wider

audience and demonstrating its potential application. A new major area of application

based on MFVB is real-time semiparametric regression analysis (Luts et al., 2013). Other

recent MFVB examples are given in, but not limited to, Hall et al. (2011), Huang et al.

(2013), Wand (2014), McGrory & Titterington (2007), Wang et al. (2006) and Neville

et al. (2014).

1.2 Contribution

Even though we have seen MFVB appear in many different statistical settings, there is

still a wide range of research needed to be carried out. This thesis aims to contribute

to the missing parts of research and application dedicated to MFVB. In particular, our

contribution lies in our ability to expose MFVB, yet again, as a faster, more prominent

alternative to more widely used inference methods such as the Laplace approximation and

MCMC. In addition, we aim to contribute by quantitatively assessing the accuracy of

MFVB in various statistical settings.

1.3 Notational guide

There are two main notations used throughout this thesis, namely vector and matrix

notation, and probability notation. These are discussed in the following two sections.

4
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1.3.1 Vector and matrix notation

Lower case bold fonts are used to denote vectors and upper case bold fonts denote matrices.

The real line is denoted by R and m-dimensional space as Rm. The m × 1 column vector

with all entries equal to 1 is denoted by 1m. The m ×m identity matrix is denoted by

Im. For vectors a,b ∈ Rm, denoted by a = [a1, . . . , am]⊺ and b = [b1, . . . , bm]⊺ we define

the following notation.

The element-wise multiplication of two vectors a and b is denoted by

a⊙ b =
⎡⎢⎢⎢⎢⎢⎢⎣

a1b1⋮
ambm

⎤⎥⎥⎥⎥⎥⎥⎦
.

The norm of a vector a is defined to be ∥ a ∥= √a⊺a. We use a−i to denote the vector a

with the ith element removed. A scalar valued function of a vector is evaluated element-

wise. For example,

log(a) =
⎡⎢⎢⎢⎢⎢⎢⎣

log(a1)⋮
log(am)

⎤⎥⎥⎥⎥⎥⎥⎦
.

We let diag(a) denote the m ×m diagonal matrix formed by assigning the elements of a

to the main diagonal. For instance,

diag(a) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 . . . 0

0 a2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For any m×m matrix A, diagonal(A) refers to the m×1 vector consisting of the diagonal

entries of A. For square matrices (A1, . . . ,Ad), we define blockdiag(A1, . . . ,Ad) to be the

block diagonal matrix, with the ith block equal to Ai. For a symmetric m×m matrix A,

the determinant and trace are denoted by ∣A∣ and tr(A) respectively, and are defined in

the usual way.

For the matrices A(m × n) and B(p × q), defined as

A =
⎡⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1n⋮ ⋱ ⋮
am1 . . . amn

⎤⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 ⋮ b1q⋮ ⋱ ⋮
bp1 . . . bpq

⎤⎥⎥⎥⎥⎥⎥⎦
,

the following notation is provided.

5



1.3. NOTATIONAL GUIDE

The transpose of A is denoted by A⊺. We let A−1 denote the matrix inverse, given that

A is an invertible matrix. The Kronecker product of two matrices A and B is denoted by

A⊗B =
⎡⎢⎢⎢⎢⎢⎢⎣

a11B . . . a1nB⋮ ⋱ ⋮
am1B . . . amnB

⎤⎥⎥⎥⎥⎥⎥⎦
.

We define vec(A) to be them2×1 vector obtained by stacking the columns ofA underneath

each other from left to right. If a is a m2 × 1 vector then vec−1 (a) is defined to be the

m ×m matrix obtained by listing the entries of a in a column-wise fashion from left to

right. Also, vec−1 denotes the usual function inverse since the domain of vec is restricted

to square matrices.

1.3.2 Probability notation

If x and y represent scalar random variables, the mean and variance of x are represented

as E(x) and Var(x). The covariance between x and y is represented as Cov(x, y).
If θ is a random vector, its density function is denoted by p(θ). If φ is also a random

vector, the conditional density function of θ given φ is denoted by p(θ∣φ). In a Bayesian

model setting, the full conditional distribution of θ is given by p(θ∣rest) and represents

the conditional distribution of θ given the rest of the random variables in the model. The

mean and covariance of a random vector θ is given by E(θ) and Cov(θ).
When using MFVB, the approximate densities are denoted using the letter q. We call

these densities q-densities. The mean and variance of a scalar random variable θ under

the MFVB criterion is given by:

Eq(θ) = μq(θ) and Varq(θ) = σ2
q(θ).

Similarly, the mean and covariance of a random vector θ under the MFVB criterion is

given by:

Eq(θ) = μq(θ) and Covq(θ) =Σq(θ).

Finally, if x1, . . . , xn is a sequence of independent random variables following distribution

D, we denote that as xi
ind.∼ D, for 1 ≤ i ≤ n.
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1.4 Theorems, definitions and results

1.4.1 Vector differential calculus

Suppose f(x) is a function with argument x ∈ R
p that returns a scalar. The derivative

vector of f(x) is the 1×p vector Dxf with ith entry equal to ∂f(x)/∂xi where xi is the ith
entry of x. Dxf is found using the First Identification Theorem (Magnus & Neudecker,

1999):

Theorem 1.4.1. If a is a 1×p vector where df(x) = adx, then the derivative vector

is

a = Dxf .

Differentiation again with respect to x gives the p × p Hessian matrix Hxf with (i, j)th
entry equal to ∂2f(x)/∂xi∂xj where xi and xj are the ith and jth entry of x. Hxf is

found using the Second Identification Theorem (Magnus & Neudecker, 1999):

Theorem 1.4.2. If A is a p× p matrix where d2f(x) = (dx)⊺Adx, then the Hessian

matrix is

A = Hxf .

The following results are useful in vector differential calculus.

Result 1.4.1. If U and V are matrix functions, then

(a) vec(dU) = dvec(U)
(b) d∣U ∣ = ∣U ∣tr(U−1dU)
(c) dU−1 = −U−1(dU)U−1
(d) d(trU) = tr (dU)
(e) d(U ⊗V ) = dU ⊗V +U ⊗ dV

(f) d (log ∣U ∣) = tr (U−1 dU)
(g) d (UV ) = (dU)V +U (dV )
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1.4.2 Special functions

Definition 1.4.1. The digamma function is the logarithmic derivative of the gamma

function and is defined by

ψ(x) = d

dx
log Γ(x), x > 0.

1.4.3 Probability distributions

Here we summarize the main properties of the distributions used throughout this thesis.

1.4.3.1 Uniform distribution

Definition 1.4.2. A scalar random variable x has a uniform distribution with mini-

mum value a and maximum value b, written x ∼ uniform(a, b) if its density function

is

p(x) = ⎧⎪⎪⎨⎪⎪⎩
1

b−a , a ≤ x ≤ b

0 , otherwise.

1.4.3.2 Bernoulli distribution

Definition 1.4.3. A scalar random variable x has a Bernoulli distribution, written

x ∼ Bernoulli(p), where 0 ≤ p ≤ 1, if its density function is defined to be

p(x) = ⎧⎪⎪⎨⎪⎪⎩
px(1 − p)1−x , x = 0,1

0 , otherwise.
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1.4.3.3 Beta distribution

Definition 1.4.4. A scalar random variable x has a Beta distribution with shape

parameters α,β > 0, written x ∼ Beta(α,β), if its density function is defined to be

p(x) = ⎧⎪⎪⎨⎪⎪⎩
1

B(α,β)xα−1 (1 − x)β−1 , 0 ≤ x ≤ 1

0 , otherwise.

The normalising constant B(α,β) is known as the Beta function and is expressed as

Γ(α + β)/Γ(α)Γ(β).

1.4.3.4 Normal distribution

The Normal distribution, also known as the Gaussian distribution, is the most widely used

distribution for continuous variables.

Definition 1.4.5. A scalar random variable x has a Normal distribution with mean

μ and variance σ2 > 0, written x ∼ N(μ,σ2) if its density function is

p(x) = 1√
2πσ2

exp{−(x − μ)2
2σ2

} .

Definition 1.4.6. The notation φ(⋅) is used to denote the standard normal density

function, that is x ∼ N(0,1):
φ(x) = 1√

2π
exp{−x2

2
} .

Thus, for general mean μ and standard deviation σ, that is if x ∼ N(μ,σ2), then
p(x) = 1

σ
φ(x − μ

σ
) .
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Definition 1.4.7. An n × 1 vector of random variables x has a Multivariate normal

distribution with n× 1 mean vector μ and n×n positive-definite covariance matrix Σ,

written x ∼ N(μ,Σ) if its density function is

p(x) = (2π)−n/2∣Σ∣−1/2 exp{1
2 (x −μ)⊺Σ−1 (x −μ)} .

1.4.3.5 Gamma distribution

Definition 1.4.8. A scalar random variable x has a Gamma distribution with shape

and rate parameters A,B > 0, written x ∼ Gamma(A,B), if its density function is

p(x) = ⎧⎪⎪⎨⎪⎪⎩
BA

Γ(A)xA−1 exp{−Bx} , x > 0

0 , otherwise.

Result 1.4.2. If x ∼ Gamma(A,B), then for any c > 0,

cx ∼ Gamma(A,B/c).

1.4.3.6 Inverse-Gamma distribution

Perhaps the main use of the Inverse-Gamma distribution is in Bayesian statistics, where

it is used as an analytically tractable prior distribution for the variance parameters.

Definition 1.4.9. A scalar random variable x has an Inverse Gamma distribution

with shape and rate parameters A,B > 0, written x ∼ Inverse-Gamma(A,B) if its

density function is

p(x) = ⎧⎪⎪⎨⎪⎪⎩
BA

Γ(A) x−A−1 exp{−B
x
} , x > 0

0 , otherwise.
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Result 1.4.3. If x ∼ Inverse-Gamma(A,B), then
E (1/x) = A/B, E {log(x)} = log(B) −ψ(A),

where ψ is the digamma function as defined in Definition 1.4.1

Result 1.4.4. If x ∼ Gamma (A,B), then
1/x ∼ Inverse-Gamma(A,B).

Result 1.4.5. If x ∼ Gamma (ν2 , 12), then x is identical to the chi-squared distribution

with ν degrees of freedom χ2
ν .

1.4.3.7 Half-Cauchy distribution

Often, alternative scale parameter priors are desired. Gelman (2006) argues that Half-

Cauchy densities are better for achieving non-informativeness of scale parameters. The

Half-Cauchy distribution is a special case of the conditionally-conjugate folded-noncentral

t family of prior distributions for the standard deviation parameter and tends to give

cleaner inferences.

Definition 1.4.10. A scalar random variable x has a Half-Cauchy distribution with

scale parameter A > 0, written x ∼ Half-Cauchy(A), if its density function is

p(x) = ⎧⎪⎪⎨⎪⎪⎩
2

πA{1+(x/A)2} , x > 0

0 , otherwise.

The following result is Result 5 of Wand, Ormerod, Padoan and Frühwirth (2011):
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Result 1.4.6. Suppose that x and a are random variables such that

x∣a ∼ Inverse-Gamma(1/2,1/a) and a ∼ Inverse-Gamma(12 ,1/A2).
Then,

√
x ∼ Half-Cauchy(A).

1.4.3.8 Wishart distribution

Definition 1.4.11. An n × n matrix X has a Wishart distribution with degrees of

freedom a > 0 and positive definite rate matrix B, written X ∼ Wishart(a,B), if its
density function is

p(X) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C−1n,a ∣B∣a/2 ∣X ∣(a−n−1)/2 exp{−1
2tr (BX)} ,

X symmetric

and positive definite

0 , otherwise,

where Cn,a ≡ 2an/2πn(n−1)/4∏n
i=1 Γ ((a + 1 − i/2)).

Result 1.4.7. If X ∼Wishart(a,B), then
E(X) = aB−1.
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1.4.3.9 Inverse-Wishart distribution

The Inverse-Wishart distribution is commonly used as the conjugate prior for the covari-

ance matrix of a multivariate normal distribution.

Definition 1.4.12. An n × n matrix X has an Inverse-Wishart distribution with

degrees of freedom a > 0 and positive definite scale matrix B, written X ∼
Inverse-Wishart(a,B), if its density function is

p (X) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C−1n,a ∣B∣a/2 ∣X ∣−(a+n+1)/2 exp{−1
2tr (BX−1)} ,

X symmetric

and positive definite

0 , otherwise,

where Cn,a ≡ 2an/2πn(n−1)/4∏n
i=1 Γ ((a + 1 − i/2)).

Result 1.4.8. If X ∼Wishart(a,B), then
X−1 ∼ Inverse-Wishart(a,B).

1.4.3.10 Multinomial distribution

Definition 1.4.13. A vector of random variables x = (x1, . . . , xk) where xi takes

on values 0, . . . , n, has a Multinomial distribution with number of independent

trials n > 0 and probabilities of success p = (p1, . . . , pk), written x1, . . . , xk ∼
Multinomial(n, p1, . . . , pk), if its density function is

p(x1, . . . , xk) =
⎧⎪⎪⎨⎪⎪⎩

n!
x1!...xk!

p1
x1 . . . pk

xk , when ∑k
i=1 xi = n

0, otherwise
.

Result 1.4.9. Suppose that x1, . . . , xk ∼Multinomial(n, p1, . . . , pk). Then,

E(xi) = npi.
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1.4.3.11 Dirichlet distribution

Definition 1.4.14. A vector of random variables x = (x1, . . . , xk) has a Dirichlet dis-

tribution with parameters α1, . . . , αk > 0 written p(x1, . . . , xk) ∼ Dirichlet(α1, . . . , αk)
if its density function is

p(x1, . . . , xk) = 1

B(α1, . . . , αk)
k∏
i=1

xi
αi−1

for all xi, . . . , xk > 0 satisfying ∑k
i=1 xi = 1. The normalizing constant is known as the

multinomial Beta function, which can be expressed in terms of the Gamma function

as:

B(α1, . . . , αk) = ∏k
i=1 Γ(αi)

Γ (∑k
i=1 αi) .

Result 1.4.10. Suppose that x1, . . . , xk ∼ Dirichlet(α1, . . . , αk). Then,

E(xi) = αi/ K∑
k=1

αk, E {log(xi)} = ψ(αi) −ψ ( K∑
k=1

αk) .

1.4.3.12 Normal mixture distribution

Definition 1.4.15. A scalar random variable x has a normal mixture distribution

with K weighted sum components, written p(x;ω,μ,σ2) ∼ Normal-Mixture(ω,μ,σ2),
if its density function is

p(x;ω,μ,σ2) = K∑
k=1

ωk (2πσ2
k)−1/2 exp{1

2(x − μk)2/σ2
k} ,

where ω = (ω1, . . . , ωK) are the mixture weights, μ = (μ1, . . . , μK) are the mixture

means and σ2 = (σ2
1, . . . , σ

2
K) are the mixture variances associated with each kth com-

ponent density.
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1.4.4 Useful vector and matrix results

Result 1.4.11. If a and b are vectors of equal length then diag(a)b = a⊙ b.

Result 1.4.12. If A and B are matrices such that the product AB can be formed,

then

tr(AB) = tr(BA).

Result 1.4.13. If A and B are m × n matrices, then tr(A⊺B) = vec(A)⊺vec(B).

Result 1.4.14. If A, B, C, D are matrices such that the products AC and BD can

be formed, then

(A⊗B)(C ⊗D) = (AC) ⊗ (BD).

Result 1.4.15. If A is an m ×m matrix and B is an n × n matrix, then

tr(A⊗B) = tr(A)tr(B).

Result 1.4.16. If A, B, C, D are matrices such that ABCD is a square matrix,

then

tr(ABCD) = vec(D)⊺(A⊗C⊺)vec(B⊺).

Result 1.4.17. Let x be a random vector. Then

E(∥ x ∥2) =∥ E(x) ∥2 +tr{Cov (x)} and E(xx⊺) = E(x)E(x)⊺ +Cov (x).
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Result 1.4.18. Let x be a random vector and A be a random matrix. Then

E(u⊺Au) = {E (u)}⊺A{E (u)} + tr{Cov(u)A} .

Result 1.4.19. Let a be constant vector, let b be a random vector, and let C be a

constant matrix with the same number of rows as b. Then

E(∥ a −Cb ∥2) =∥ a −CE(b) ∥2 +tr{CCov (b)C⊺} .

Result 1.4.20. Let x and y be n×1 random vectors such that x is conditioned on y.

Then,

Cov(y) = E {Cov(y∣x)} +Cov{E(y∣x)} .

1.5 Mean field variational Bayes

Let us consider a general Bayesian model with parameter vector θ and observed data

vector y. As discussed earlier, even for simple models, it is often the case that the posterior

density function p(θ∣y) is intractable. To overcome this problem, we employ MFVB where

the objective is to find a tractable distribution q(θ) that closely approximates the true

posterior distribution p(θ∣y). For example, we wish to replace the joint posterior density

function p(θ∣y) with an approximating density function q(θ) that assumes the product

density form

q(θ) = k∏
i=1

qi(θi) (1.1)

for some partition {θ1, . . . ,θk} of θ. Tractability is a major factor on the choice of parti-

tion of the approximate density function q(θ1, . . . ,θk). The so-called q-densities are then

chosen to minimise the Kullback-Leibler distance between the two density functions:

∫ log{p(θ∣y)
q(θ) } q(θ)dθ
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subject to (1.1). Note that the integrals are replaced with sums in the case of discrete

variables, however in this thesis we assume θ to be continuous over the parameter space

Θ. An equivalent optimization problem, attained through standard manipulations, is to

maximise:

p(y; q) ≡ exp∫ q1(θ1) . . . qk(θk) log{ p(y,θ)
q1(θ1) . . . qk(θk)}dθ1 . . . dθk (1.2)

where p(y; q) represents the lower bound on the marginal likelihood p(y) for all q-densities.
Taking the logarithm of (1.2) gives

log p(y; q) ∝ ∫ q1(θ1) log p̃(y,θ1)dθ1 − ∫ q1(θ1) log q1(θ1)dθ1 (1.3)

where

log p̃(y,θ1) = ∫ log p(y,θ)q2(θ2) × . . . × qk(θk)dθ2 . . . dθk

= E−θ1 {log p(y,θ)} ,
where E−θ1 is the expectation with respect to all factors except q1(θ1). By recognising

that (1.3) is the negative Kullback Leibler divergence between q1(θ1) and p̃(y,θ1), we note
that the minimum occurs when q1(θ1) = p̃(y,θ1). Thus we obtain a general expression

for the optimal solution q∗1(θ1) given by

q∗1(θ1) ∝ exp{E−θ1 log p(y,θ)} .
This can be generalized to an expression for the optimal q-density for each of the i factors:

q∗i (θi) ∝ exp{E−θi
log p(y,θ)} , 1 ≤ i ≤ k.

It is easy to show that an alternative expression for q∗i (θi) is

q∗i (θi) ∝ exp{E−θi
log p(θi∣rest)} , 1 ≤ i ≤ k, (1.4)

where ‘rest’ is the set comprising the random variables in the model, except for θi. An

iterative coordinate ascent scheme induced by (1.4) is then used to find the optimal param-

eters in these q-densities. If conjugate priors have been used, then the optimal q-densities

belong to known density families (e.g., Winn & Bishop, 2005).

Assuming that each iteration results in an increase in log p(y; q), and the search re-

stricted to a compact set, then convergence is guaranteed to a local maximiser of log p(y; q)
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(Luenberger & Ye, 2008, p. 253). Convergence can be monitored using successive values

of log p(y; q).

1.6 Variational message passing

Variational message passing (VMP) is an alternative to MFVB which results in exactly

the same answers, but instead works with “messages” that are passed between neighbour-

ing nodes on the factor graph of the model. Factor graphs will be discussed in detail in

Chapter 7. VMP is primarily concerned with conjugate exponential family distributions,

represented by their natural parameter versions of the distribution. An in-depth expla-

nation as well as a discussion on the advantages and disadvantages of VMP is given in

Chapter 7.

1.7 Non-conjugate variational message passing

Non-conjugate variational message passing (NCVMP) is an extension of VMP which ob-

viates the restriction of only being able to work with conjugate exponential family distri-

butions, whilst maintaining the purely algebraic form of the optimal parameters (Knowles

& Minka, 2011). The modularity of NCVMP allows modification only to those model pa-

rameters that involve previously intractable solutions, whilst keeping the VMP or MFVB

solutions of the other parameters in the model. As a result, NCVMP broadens the class

of tractable models for approximate inference using VMP and/or MFVB.

Suppose we approximate the joint posterior density function p(θ,φ∣y) by the product

density form

q1(θ1) . . . qk(θk) qφ(φ), (1.5)

where θ = {θ1, . . . ,θk}. From Section 1.5 we see that the solutions satisfy

q∗i (θi) ∝ exp{Eq(−θi) log p(θi∣y,θ/θi,φ)} , 1 ≤ i ≤ k,

q∗φ(φ) ∝ exp{Eq(−φ) log p(φ∣y,θ)} ,
where θ/θi represents the model parameters θ without θi. When Eq(−φ) log p(φ∣y,θ) does
not offer a tractable solution, NCVMP can be used by replacing (1.5) with

q1(θ1) . . . qk(θk) qφ(φ;η),
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where qφ(φ;η) is forced to have an exponential family density function with natural

parameter vector η and natural statistic T (φ). Then, using Theorem 1 of Knowles &

Minka (2011) to find an update for η and regular MFVB for the other parameters, we get

q∗i (θi) ∝ exp{Eq(−θi) log p(θi∣y,θ/θi,φ)} , 1 ≤ i ≤ k,

η ← [var{T (φ)}]−1 [DηEq(θ,φ) {log p(y,θ,φ)}]⊺ . (1.6)

This thesis only considers the case where q(φ;η) corresponds to a d-dimensional Mul-

tivariate Normal density function. For this special case, Wand (2014) explains that the

number of entries in var {T (φ)} is quartic in d and thus the η update in (1.6) becomes

numerically challenging. To get around this, Wand (2014) proves that

η ← [var{T (φ)}]−1 [DηEq(θ,φ) {log p(y,θ,φ)}]⊺

is mathematically equivalent to the following updates

vq(φ) ← (Dμq(φ)S)⊺
Σq(φ) ← {−2vec−1 ((Dvec(Σq(φ))S)⊺)}−1
μq(φ) ← μq(φ) +Σq(φ)vq(φ),

where

S = Eq(θ,φ) {log p(y,θ,φ)} .
vec and vec−1 are defined in Section 1.3.1 and D represents the derivative vector which is

defined in Section 1.4.1. However, to get around using the vec operator, a result given in

the appendix of Opper & Archambeau (2009) shows that an equivalent representation of

the second of these updates is

Σq(φ) ← (−Hμq(φ)S)−1

where H represents the Hessian matrix and is defined in Section 1.4.1. The proof of this

result is given in Appendix 3.C of this thesis. We work with this alternative form when

using NCVMP.

1.8 Graphical models

One of the engaging aspects of graphical models is that a particular graph has the ability to

make probabilistic statements for an extensive class of distributions. In particular, we focus
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on the use of graph representations of hierarchical Bayesian models, as they are an effective

tool in understanding the conditional dependence structure of these models. Graphical

models aid in the calculation of the imposed product factorisation on the posterior p(θ∣y)
which is involved in the initial stages of MFVB. As a result, an additional partition of the

dependence structure in the model, known as an induced factorization (Bishop, 2006), is

then possible. Both of these factorizations are subject to the type of imposed factorization

and the underlying structure of the model. Graphical models are a very useful tool in

aiding our understanding of these factorizations. These are defined and outlined in more

detail in the following section.

1.8.1 Directed acyclic graphs

A graph comprises a set of nodes together with a set of edges, where edges are placed

between pairs of nodes. In this thesis, nodes are depicted as circles and edges are depicted

as line segments. Also, we use the notation a ⊥⊥ b ∣ c to denote that a is conditionally

independent to b given c, in a graphical model setting.

Definition 1.8.1. A graph is an undirected graph if it comprises a set of nodes

connected by undirected edges.

Definition 1.8.2. A graph is a directed graph if it comprises a set of nodes connected

by directed edges.

Definition 1.8.3. In a directed graph, a path between a set of nodes is a cycle if all

directed edges in the path meet the nodes head-to-tail throughout the path.

Figure 1.1 illustrates examples of an undirected graph, directed graph and a cycle.

Definition 1.8.4. A directed graph which has no cycles is acyclic. This is referred

to as a directed acyclic graph (DAG).
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a b

c
(a)

a b

c d

(b)

a

b c d
(c)

Figure 1.1: (a) Example of a directed graph. (b) Example of an undirected graph. (c) A
directed graph which has cycle (a, c, b).
Throughout this thesis, we will use DAG as shorthand for directed acyclic graph. Figure

1.2 displays a simple example of a DAG.

As mentioned previously, graphical representations of hierarchical Bayesian models are

an effective tool in understanding the conditional dependence structure of such models.

This is achieved when we consider the nodes on a DAG to represent the random variables

in the model, and the directed edges to represent the conditional dependence structure of

the model. It is often easier to think of a DAG as a family tree, where a directed edge

represents a child-parent relationship within the family.

Definition 1.8.5. In a DAG, if two nodes are connected by a directed edge then the

node connected by the arrow-head is the child and the node connected by the tail is

the parent. If two nodes have a child in common, they are known as co-parents.

Definition 1.8.6. Within a DAG, the Markov blanket of a node is the set containing

the node’s children, parents and co-parents.
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a

b c

d e

Figure 1.2: A simple DAG containing nodes a, b, c, d and e.

a

b
c

d

e f g

h

i

node children parents co-parents
Markov
blanket

a {} {c, d} {} {c, d}
b {} {c, e} {} {c, e}
c {a, b, g} {} {d, e} {a, b, d, e, g}
d {a} {g, h} {c} {a, c, g, h}
e {b} {f} {c} {b, c, f}
f {e} {i} {} {e, i}
g {d, i} {c} {h} {c, d, h, i}
h {d} {} {g} {d, g}
i {f} {g} {} {f, g}

Figure 1.3: Left panel: Example of a DAG. Right panel: Table of each node’s corresponding
children, parents, co-parents and Markov blanket from the given DAG.

Figure 1.3 illustrates the family tree terminology for a given DAG, including its Markov

blanket. We now turn our attention to probabilistic DAGs where the nodes represent

random variables {x1, . . . , xk} with joint density function p(x1, . . . , xk), given by Definition

1.8.7.

Definition 1.8.7. The joint density function of the random variables x1, . . . , xk rep-

resented by nodes in a DAG is given by

p(x1, . . . , xk) = k∏
i=1

p(xi ∣parents of xi).

DAGs aid in the calculation of the full conditional distributions as is clear from the fol-

lowing definition.
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Definition 1.8.8. The full conditional distribution of a node xi is the distribution of

xi given all of the other random variables in the DAG, and is denoted by p(xi∣rest).

The following result shows that probabilistically we can separate each node and its corre-

sponding Markov blanket with the remainder of the DAG.

Result 1.8.1. Let p(x1, . . . , xk) be a density function defined on a DAG. Then

p(xi∣rest) = p(xi∣Markov blanket of xi), 1 ≤ i ≤ k.

Result 1.8.1 corresponds to Section 3.2 of Jordan (2004). Making use of Result 1.8.1 in

equation (1.4) we now have the optimal q-densities satisfying

q∗i (xi) ∝ exp{E−xi log p(xi∣Markov blanket of xi)} , 1 ≤ i ≤ k. (1.7)

This is known as the locality property of DAGs and can be extremely important when

performing MFVB on large models.

1.8.2 Moral graphs

Moral graphs are undirected graphs that are constructed from DAGs by forcing the im-

moral parents of a common node to get married.

Definition 1.8.9. The moral graph of a DAG is constructed by adding an undirected

edge between all pairs of parents of a node that are not already connected and turning

all directed edges into undirected edges. This procedure is referred to as moralisation.

The following two definitions deal with ancestral sets, which are useful for results concern-

ing probabilistic graphs.

23



1.8. GRAPHICAL MODELS

Definition 1.8.10. An ancestral set is a set of nodes in a DAG such that for each

node in the set, all of its parents are also in the set.

Definition 1.8.11. Let S be a subset of nodes in a DAG. Then the ancestral set

containing S that has the fewest number of nodes is the smallest ancestral set

containing S.

The above definitions aid in the construction of the Theorem 1.8.1.

Theorem 1.8.1. If A, B and C are disjoint node subsets in a DAG then A ⊥⊥ B∣C
if C separates A from B in the moral graph of the smallest ancestral set containing

A ∪B ∪C.

Theorem 1.8.1 corresponds to Corollary 3.23 of Lauritzen (1996).

1.8.3 Graphical models viewpoint of mean field variational Bayes

When considering the conditional independence structure of a DAG, the main benefit of

incorporating moral graphs and ancestral sets for MFVB is their extremely simple nature

compared to that of d-separation (Bishop, 2006). For example, consider the Bayesian

hierarchical Gaussian linear mixed model:

y∣β,u, σ2
ε ∼ N (Xβ +Zu, σ2

εI) , u∣σ2
u1
, σ2

u2
, σ2

u3
∼ N (0,blockdiag (σ2

u1
, σ2

u2
, σ2

u3
)) ,

β ∼ N (0, σ2
βI) , σ2

u�
∼ Inverse-Gamma ∼ (Au�

,Bu�
) , 1 ≤ 
 ≤ 3,

σ2
ε ∼ Inverse-Gamma ∼ (Aε,Bε) ,

(1.8)

for σ2
β ,Au�

,Bu�
,Aε,Bε > 0 and where y is a vector of responses and X and Z are design

matrices. Also, β and u are vectors of fixed effects and random effects, respectively, and

σ2
u1
, σ2

u2
, σ2

u3
and σ2

ε are variance parameters. Figure 1.4 shows the DAG and corresponding

moral graph for (1.8) where the shaded node corresponds to the observed data vector.

Random effects and auxiliary variables are referred to as hidden nodes. The conditional
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β

y

σ2
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u2

σ2
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(a)

β

y

σ2
ε

u
σ2
u1

σ2
u2

σ2
u3

(b)

Figure 1.4: (a) DAG representing model (1.8). (b) Moral graph of DAG in (a).

dependence structure of (1.8) is illustrated through the directed edges in the DAG in

Figure 1.4 (a).

MFVB is focused around imposing a product restriction on the joint posterior density

function. For instance, we may impose the restriction

q(β,u, σ2
u1
, σ2

u2
, σ2

u3
, σ2

ε) = q(β,u) q(σ2
u1
, σ2

u2
, σ2

u3
, σ2

ε). (1.9)

The right-hand side of (1.9) corresponds to removing the edges connecting β with σ2
ε ,

u with σ2
ε , u with σ2

u1
, u with σ2

u2
, and u with σ2

u3
in the moral graph in Figure 1.4

(b). A tractable solution indeed arises for this product restriction, however to illustrate

the simplicity of using moralisation for induced factorisations, we assume that a further

breakdown is necessary.

Let A = {σ2
u1
, σ2

u2
, σ2

u3
}, B = σ2

ε and C = {y,β,u}. The smallest ancestral set containing

A∪B∪C is the entire DAG. It is also evident from the moral graph that all paths between

{σ2
u1
, σ2

u2
, σ2

u3
} and σ2

ε must pass through at least one of {y,β,u}. Therefore, adopting

Theorem 1.8.1 we see that

{σ2
u1
, σ2

u2
, σ2

u3
} ⊥⊥ σ2

ε ∣ {y,β,u} ,
and hence (1.9) is updated to

q(β,u, σ2
u1
, σ2

u2
, σ2

u3
, σ2

ε) = q(β,u) q(σ2
u1
, σ2

u2
, σ2

u3
) q(σ2

ε).
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Often, the use of induced factorisations is very beneficial, especially when considering

increasingly complex models. The use of moral graphs enables detection of these factori-

sations which results in efficient derivations of MFVB solutions.

1.9 Accuracy measure of mean field variational Bayes

The accuracy of MFVB can range from excellent to relatively poor, depending on the

structure of the DAG and type of product restriction imposed on the model i.e. number

of edges removed. This section gives detail on the accuracy measure used to assess the

performance of MFVB against its MCMC benchmark.

Let θ represent a generic univariate parameter. We are interested in measuring the

accuracy of an MFVB approximate density q∗(θ) with respect to the exact posterior

density p(θ∣y). There are various ways in which this can be done. Faes et al. (2011)

recommend working with the L1 loss, or integrated absolute error (IAE) of q∗(θ). This

quantity is given by

IAE{q∗(θ)} =∫
∞

−∞ ∣q∗(θ) − p(θ∣y)∣dθ.
The fact that IAE{q∗(θ)} lies between 0 and 2 gives motivation to the accuracy measure

accuracy{q∗(θ)} = 1 − 1
2 IAE{q∗(θ)} ,

where the quantity 1
2 IAE{q∗(θ)} is the total variation metric corresponding to the prob-

ability measure induced by p(θ∣y) and q∗(θ). Since 0 ≤ accuracy{q∗(θ)} ≤ 1 and thus can

be expressed as a percentage. The posterior p(θ∣y) can be approximated quite well by

performing MCMC with sufficiently large sample sizes.

1.10 O’Sullivan penalised splines

O’Sullivan splines are an immediate generalisation of smoothing splines (e.g. Green & Sil-

verman, 1994). Prior to the mid-1990s, smoothing splines were of particular interest in the

spline-based non-parametric regression literature. This involved the number of basis func-

tions approximately equal to the sample size (e.g. Wahba, 1990; Green & Silverman, 1994).

O’Sullivan penalised splines possess the attractive feature of using considerably fewer basis

functions, and their natural boundary conditions make them a very reliable choice of basis
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in semiparametric and nonparametric regression. Wand & Ormerod (2008) give a detailed

description of how O’Sullivan penalised splines can be added to the mixed model-based

regression setting including examples with R code. We summarise the approach here.

Consider the simple non-parametric regression setting:

yi = f(xi) + εi, 1 ≤ i ≤ n,

where (xi, yi) ∈ R × R. Suppose we are interested in an estimate of f over the interval

[a, b] comprising the xis. For K ≤ n, let B1, . . . ,BK+4 be the cubic-B-spline basis functions
defined by the knot sequence a = κ1 = κ2 = κ3 = κ4 < κ5 < . . . < κK+4 < κK+5 = κK+6 =
κK+7 = κK+8 = b. We require a function that minimises the penalised residual sum of

squares

RSS(f, λ) = n∑
i=1

{yi − f(xi)}2 + λ∫ b

a
{f ′′(x)}dx, (1.10)

where λ > 0 is a smoothing parameter. The solution is the O’Sullivan penalised spline

f(x) =Bν and thus (1.10) reduces to

RSS(ν, λ) = (y −Bν)⊺(y −Bν) + λν⊺Ων (1.11)

where Bik = Bk(xi), and Ωkk′ = ∫ b
a B

′′
k(x)B′′k′(x)dx. It is easy to see that the solution to

(1.11) is

ν̂ = (B⊺B + λΩ)−1B⊺y (1.12)

and the fitted O’Sullivan penalised spline is thus given by f̂(x) = Bν̂. Computation of

the design matrix B is fairly straightforward, however computation of Ω can be some-

what challenging. Using the theorem in Section 6 of Wand & Ormerod (2008) we get an

expression for Ω:

Ω = (B̃′′)⊺diag(ω)B̃′′
(1.13)

where B̃
′′
is the 3(K +7)×(K +4) matrix with (i, j)th entry equal to B

′′
j (x̃i) and x̃i is the

ith entry of x̃ = (κ1, (κ1 + κ2)/2, κ2, κ2, (κ2 + κ3)/2, κ3, . . . , κK+7, (κK+7 + κK+8)/2, κK+8).
Also, ω is the 3 (K + 7) × 1 vector given by

ω = (1
6 (Δκ)1 , 46 (Δκ)1 , 16 (Δκ)1 , 16 (Δκ)2 , 46 (Δκ)2 , 16 (Δκ)2 , . . . , 16 (Δκ)K+7 ,

4
6 (Δκ)K+7 , 16 (Δκ)K+7) ,
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1.10. O’SULLIVAN PENALISED SPLINES

where (Δκ)k ≡ κK+1 − κk,1 ≤ k ≤ K. The expression in (1.13) involves Simpson’s rule,

which is applied over each of the inter-knot differences. For more detail on the construction

of (1.13) see Section 2 of Wand & Ormerod (2008). Throughout this thesis we work

with mixed model representations of Bayesian hierarchical models and thus show how to

incorporate O-Sullivan penalised splines using this representation in the following section.

1.10.1 Mixed model representation

The penalised splines can be written in a linear mixed model form:

y =Xβ +Zu + ε,

⎡⎢⎢⎢⎢⎣
u

ε

⎤⎥⎥⎥⎥⎦ ∼ N
⎛
⎝
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
σ2
uI 0

0 σ2
εI

⎤⎥⎥⎥⎥⎦
⎞
⎠ , (1.14)

where X = [1 xi]1≤i≤n and Z are design matrices and Z contains B-spline basis functions.

A convenient form of expressing ν̂ in (1.12) is by using best linear unbiased prediction

(BLUP) of β and u (e.g. Ruppert et al., 2003, Section 4.5.3). This leads to

ν̂ = ⎡⎢⎢⎢⎢⎣
β̂

û

⎤⎥⎥⎥⎥⎦ =
⎛
⎝C⊺C + λ

⎡⎢⎢⎢⎢⎣
0 0

0 I

⎤⎥⎥⎥⎥⎦
⎞
⎠
−1

C⊺y, (1.15)

where λ = σ2
u/σ2

ε and C = [X ∣Z]. The equivalence of (1.15) and (1.12) can be quantified

by using a (K + 4) × (K + 4) linear transformation matrix L such that

C =BL and L⊺ΩL = ⎡⎢⎢⎢⎢⎣
0 0

0 I

⎤⎥⎥⎥⎥⎦ .
Wand & Ormerod (2008) show that the spectral decomposition of Ω has the form Ω =
Udiag(d)U⊺, where U⊺U = I and d is a (K+4)×1 vector with 2 zero entries and all others

positive. Also, the linear transformation matrix L has the form L = [UX ∣UZ diag(d−1/2Z )],
where dZ is the (K + 2) × 1 sub-vector of d containing the positive entries and UZ is the

(K + 4) × (K + 2) sub-matrix of U with columns corresponding to the positive entries in

d. Therefore, O-Sullivan penalised splines can be used for fitting (1.14) with the following

design matrices:

X =BUX and Z =BUZdiag (d−1/2Z ) ,
whilst keeping in mind that BUX is a basis for straight lines (Speed, 1991), and using X

instead will not affect the fit.
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1.11 Statistical software

Many semiparametric and nonparametric regression models can be formulated as hierar-

chical Bayesian models. An upside to this type of formulation is that MCMC software for

these type of models can easily be used for fitting and inference. It is possible to tackle

different semiparametric regression contexts through the use of BUGS (Bayesian inference

Using Gibbs Sampling) inference engine (Spiegelhalter et al., 2003).

In the R computing environment (R Core Team, 2013) BUGS can be accessed through

the package BRugs (Ligges et al., 2009), thus enabling complete analysis through a single

R script. At the moment, BRugs is only compatible with the Windows operating system

communicating through a version of BUGS known as OpenBUGS (Thomas et al., 2006).

MCMC samples can also be obtained using Stan (Stan Development Team, 2014)

through the R computing environment, made possible using the rstan package (Stan De-

velopment Team, 2014). Stan implements Bayesian inference using Hamiltonian Monte

Carlo (HMC) sampling, written in C ++. An alternative to MCMC, which we explore

in this thesis, is the variational approximation and in particular MFVB. Some inference

engines have come to light recently for performing variational inference using graphical

models. These include VIBES (Bishop et al., 2003), short for Variational Inference for

BayESian networks and Infer.NET (Minka et al., 2008). Even though a very useful tool

in variational approximations, we do not make use of VIBES or Infer.NET as they do not

cater to the complexity of most of the models considered in this thesis.

In summary, graphical model-based Bayesian inference engines such as BUGS, Stan

and Infer.NET, currently entertain a large variety of semiparametric and nonparametric

regression settings (e.g. Marley & Wand, 2010; Luts et al., 2014). BUGS and Stan both

make use of Monte Carlo methodology, which is extremely accurate but can be quite slow.

Infer.NET on the other hand makes use of variational approximations, such as MFVB,

which are slightly less accurate but much faster.

1.11.1 Example in BRugs and RStan

Here we present R code for the simple Binomial model with Beta prior:

X ∣p ∼ Binomial(n, p)
p ∼ Beta(A,B).
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After specification of the data, sample size n, probability p, and the two hyperparameters

A and B, the model in BRugs takes the form:

# Specify model in BRugs:

model

{

for(i in 1:n)

{

x[i] ~ dbern(p)

}

p ~ dbeta(A,B)

}

Whilst coding the model in RStan is of the form:

# Specify model in RStan:

binomBetaModel <- ’

data

{

int<lower=1> n;

int<lower=0,upper=1> x[n];

}

parameters

{

real<lower=0,upper=1> p;

}

model

{

for (i in 1:n)

x[i] ~ bernoulli(p);

p ~ beta(A,B);binomBetaModel

}’

Throughout this thesis, we make use of both BRugs and RStan for MCMC sampling.
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1.12 The flow of the thesis

The primary aim of this thesis is to determine whether MFVB can be used as an alterna-

tive to traditional methods for performing inference in semiparametric and nonparametric

regression settings. We show that this is possible for various regression settings to allow

for fast approximate inference when traditional inference is time consuming or intractable.

Each chapter in this thesis is dedicated to the development of an MFVB algorithm catered

to a particular model setting. In some instances this requires extension of previously de-

veloped MFVB methodology to the model being considered, whereas in others, it involves

the original development of an MFVB algorithm. We then use various diagnostic tech-

niques to assess the efficacy of the MFVB algorithm in terms of convergence, timing and

accuracy.

Chapter 2 sees the development of an MFVB algorithm for the marginal longitudinal

semiparametric regression setting. There are numerous contributions to the topic, how-

ever we focus on the Bayesian penalised spline approach of Al Kadiri et al. (2010) who use

MCMC as an effective way to fitting their class of models and thus we present a compar-

ison of both approaches. The main contribution here lies in the MFVB algorithm being

one of the first variational algorithms to involve estimation of an unstructured covariance

matrix. In Chapter 3, a modification of MFVB is discussed, known as non-conjugate vari-

ational message passing, which aids in the incorporation of heteroscedasticity, whilst also

involving only closed form algebraic expressions. Chapter 4 looks into the development of

MFVB algorithms for three extensions of the heteroscedastic setting given in Chapter 3.

This includes an algorithm catered to performing semiparametric regression in real time,

bivariate predictor nonparametric regression and in an additive model setting. Accuracy

scores and time comparisons are also considered as an effective assessment of the algo-

rithms used. In Chapter 5 we focus on the development of MFVB algorithms for fitting

large data sets that exhibit multilevel and longitudinal structures. In particular, we take

advantage of a streamlined approach to fitting these type of data. Two types of models

are considered: two-level and three-level Gaussian response models. Each are motivated

by a corresponding real dataset. Chapter 6 is concerned with MFVB inference for mixture

models in measurement error problems. This chapter is heavily motivated by the area of

epidemiology, where measurements often do not get measured accurately on all subjects.

In Chapter 7, we present a discussion about an alternative approach to MFVB known as
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variational message passing, which produces identical results to MFVB but is based on

a different algebraic system that allows easier extension to arbitrarily large models. We

show this approach for the models considered in Chapter 2 and 6.
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Chapter 2

Mean field variational Bayes for

marginal longitudinal

semiparametric regression

2.1 Introduction

The definitive property of a longitudinal data set is repeated measurements on subjects

enabling direct study of change over time. Longitudinal data hence require non-traditional

statistical methods, since the set of measurements on one subject tends to be intercor-

related, which must be taken into account when drawing statistical inferences. Over the

past decade, a great deal of exposure of longitudinal data in semiparametric regression has

emerged. In particular, the special case in which the covariance matrix for each subject’s

responses is treated as an unspecified parameter to be estimated. This is known as the

marginal longitudinal semiparametric regression problem. Benefits to marginal longitudi-

nal semiparametric regression analysis include flexible estimation of regression functions

and marginal estimation of the covariance matrix of the response vector for each subject.

A proliferation of contributions to the topic emerged in wake of Lin & Carroll (2001)

showing that ordinary kernel smoothers are more efficient if working-independence is as-

sumed. A summary of research on this problem prior to 2007 is outlined in Ruppert et al.

(2009, section 3.9). One estimation method for marginal models is MCMC. The primary

The content of this chapter is published as: Menictas, M. andWand. M.P. (2013). Variational inference
for marginal longitudinal semiparametric regression. Stat, 2, 61–71. This research was also presented at
the Young Statisticians Conference, Melbourne, 2013.
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aim of this chapter is to further discussions on the benefit of using a fast determinis-

tic alternative to MCMC known as MFVB, for the marginal longitudinal semiparametric

regression problem and some of its semiparametric extensions.

We focus on the Bayesian penalized spline approach of Al Kadiri et al. (2010) for

function estimation. For fitting, Al Kadiri et al. (2010) use MCMC as a fitting and

inference tool. However, they admit that such an approach is quite slow in estimation.

Their real data example takes almost an hour to run on a contemporary laptop when

using BUGS for the MCMC. The variational algorithm developed in this chapter, based

on the MFVB paradigm, fits the data in seconds with very similar results. In addition, our

algorithm is one of the first variational algorithms involving estimation of an unstructured

covariance matrix.

Section 2.2 provides a brief overview of the marginal longitudinal semiparametric re-

gression models considered in Al Kadiri et al. (2010). The corresponding MFVB algorithm

is developed in Section 2.3. Section 2.4 provides a simulation study for assessing the per-

formance of MFVB against that of MCMC. We provide a real data example in Section

2.5 and the appendices provide algebraic details tied to the methodology in this chapter.

2.2 Marginal longitudinal semiparametric regression mod-

els

Nonparametric techniques have recently come into view as an effective way to model

longitudinal data. Longitudinal data comprise repeated measurements which are recorded

over time on the same subject. We use yij to denote a measurement for the ith subject

at the jth time point. Let yi = (yi1, . . . , yin) be the vector of responses, xi = (xi1, . . . , xin)
be the vector of predictors for the ith subject, where 1 ≤ i ≤m and 1 ≤ j ≤ n.

As such, the marginal longitudinal nonparametric regression model is

E (yij) = f (xij) , Cov{yi∣f (xi)} =Σ, 1 ≤ i ≤m, 1 ≤ j ≤ n, (2.1)

where we assume that the mean function f is a real-valued smooth function, and the

covariance matrix Σ has dimension n × n. In order to allow for cases where f (xi) is

random as specified by the model, rather than using Cov (yi) to denote the covariance of

yi, we use Cov{yi∣f (xi)}. Figure 2.1 shows, by example, a simulated data set for model
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Figure 2.1: A data set simulated from the marginal longitudinal nonparametric regression
model (2.1) with m = 100, n = 5 and f and Σ are as described in (2.2).

(2.1), with m = 100, n = 5,

f(x) = 1.5 + sin (0.2(x/2 − 4))) and Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.160 0.120 0.090 0.068 0.051

0.120 0.160 0.120 0.090 0.068

0.090 0.120 0.160 0.120 0.090

0.068 0.090 0.120 0.160 0.120

0.051 0.068 0.090 0.120 0.160

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

We are interested in efficient estimation of f and Σ from data such as that shown in Figure

2.1. The procedure we use to obtain the mean function estimate involves spline models

for f of the form

f (x) = β0 + β1x + K∑
k=1

ukzk (x) , (2.3)

where zk, 1 ≤ k ≤ K represents a set of suitably transformed cubic O’Sullivan splines, as

described in Section 1.10. The quantity of spline basis functions K has a small effect on

the adequacy of (2.3). However, in practice, K = 25 is a sufficient choice for most spline

basis functions (Li & Ruppert, 2008). In order to prevent over fitting of the function, we

penalize the spline basis function coefficients uk, 1 ≤ k ≤K, by treating them as a random

sample from a distribution which has a mean of zero and a variance of σ2. This allows for

35



2.2. MARGINAL LONGITUDINAL SEMIPARAMETRIC REGRESSION MODELS

the following linear mixed model representation of (2.1) and (2.3):

y =Xβ +Zu + ε (2.4)

where

y =
⎡⎢⎢⎢⎢⎢⎢⎣

y1⋮
ym

⎤⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 x1⋮ ⋮
1 xm

⎤⎥⎥⎥⎥⎥⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎣
z1 (x1) . . . zK (x1)⋮ ⋱ ⋮
z1 (xm) . . . zK (xm)

⎤⎥⎥⎥⎥⎥⎥⎦
, ε =

⎡⎢⎢⎢⎢⎢⎢⎣
ε1⋮
εm

⎤⎥⎥⎥⎥⎥⎥⎦
,

β = ⎡⎢⎢⎢⎢⎣
β0

β1

⎤⎥⎥⎥⎥⎦ , and u =
⎡⎢⎢⎢⎢⎢⎢⎣

u1⋮
uK

⎤⎥⎥⎥⎥⎥⎥⎦
.

The random effects have a mean of zero and a covariance matrix:

Cov

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

ε1

ε2⋮
εm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2I 0 0 . . . 0

0 Σ 0 . . . 0

0 0 Σ . . . 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . Σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎣

σ2I 0

0 Im ⊗Σ

⎤⎥⎥⎥⎥⎦ .

The model for the distribution of u and ε is

⎡⎢⎢⎢⎢⎣
u

ε

⎤⎥⎥⎥⎥⎦ ∼ N
⎛
⎝
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
σ2I 0

0 Im ⊗Σ

⎤⎥⎥⎥⎥⎦
⎞
⎠ . (2.5)

Sections 2.2.1, 2.2.2 and 2.2.3 provide semiparametric extensions to model (2.1).

2.2.1 Additive models extension

There are various semiparametric regressions extensions of (2.1) that could be considered.

Here we consider the additive model extension. This involves the incorporation of several

continuous predictor variables for each scalar response variable. We restrict our discussion

to the incorporation of two continuous predictor variables x1ij and x2ij corresponding to

each yij . In this case, the marginal longitudinal additive model is

E (yij) = β0 + f1 (x1ij) + f2 (x2ij) ,
Cov{yi∣f1 (x1i) , f2 (x2i)} =Σ, 1 ≤ i ≤m, 1 ≤ j ≤ n,

(2.6)

where we assume that the mean functions f1 and f2 are smooth functions and the covari-

ance matrix Σ has dimension n × n. The procedure we use to obtain the mean function
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estimates involve spline models for f1 and f2 of the following form:

f1 (x1) = β11x1 + K1∑
k=1

u1kz1k (x1) and f2 (x2) = β21x2 + K2∑
k=1

u2kz2k (x2) , (2.7)

with coefficients u1k
ind.∼ N (0, σ12), 1 ≤ k ≤ K1 and u2k

ind.∼ N (0, σ22), 1 ≤ k ≤ K2. This

allows for the following Gaussian linear mixed model representation of (2.6) and (2.7):

y =Xβ +Zu + ε.

The differences between this model and the one considered in Section 2.2 lie in the structure

of the design matrices. The design matrices are now

X =
⎡⎢⎢⎢⎢⎢⎢⎣
1 x11 x21⋮ ⋮ ⋮
1 x1m x2m

⎤⎥⎥⎥⎥⎥⎥⎦
, and

Z =
⎡⎢⎢⎢⎢⎢⎢⎣

z11 (x11) . . . z1K1 (x11) z21 (x21) . . . z2K2 (x21)⋮ ⋱ ⋮ ⋮ ⋱ ⋮
z11 (x1m) . . . z1K1 (x1m) z21 (x2m) . . . z2K2 (x2m)

⎤⎥⎥⎥⎥⎥⎥⎦
,

where x1i is the n × 1 vector containing the x1ij measurements and x2i is the n × 1 vector

containing the x2ij measurements. The coefficient vectors are

β =
⎡⎢⎢⎢⎢⎢⎢⎣

β0

β11

β12

⎤⎥⎥⎥⎥⎥⎥⎦
, and u = ⎡⎢⎢⎢⎢⎣

u1

u2

⎤⎥⎥⎥⎥⎦ ,

where u1 is the K1 × 1 vector containing the u1k and u2 is the K2 × 1 vector containing

the u2k. A convenient assumption for estimating σ1
2, σ2

2, and Σ is now

⎡⎢⎢⎢⎢⎢⎢⎣
u1

u2

ε

⎤⎥⎥⎥⎥⎥⎥⎦
∼ N

⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣
σ1

2I 0 0

0 σ2
2I 0

0 0 Im ⊗Σ

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠ . (2.8)

Fitting via MFVB is analogous to that described in Section 2.3. The difference here is that

there are two variance parameters σ1
2 and σ2

2 (where in extensions to additive models

with d smooth functions there will be d such variance parameters) as well as the error

covariance matrix Σ. A simpler type of additive model is

E (yij) = β0 + β1x1ij + f2 (x2ij) , Cov{yi∣x1i, f2 (x2i)} =Σ,

1 ≤ i ≤m, 1 ≤ j ≤ n.
(2.9)
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This model represents a semiparametric regression model in the true sense, since the

right-hand side comprises a parametric component β1x1ij where the effect of the x1ijs are

modelled parametrically and a nonparametric component f2 (x2i), where the effect of the

x2ijs are modelled nonparametrically. This is a simpler model to that of (2.6), since there

is only one smooth function component. However, the linear mixed model corresponding

to this model is similar to that in Section 2.2, where the random component structure

(2.5) applies to (2.9).

2.2.2 Incorporation of interactions

Given the situation where an additive model is not guaranteed to provide a satisfactory

fit of the data, one may opt to incorporate an interaction term. Such an extension of (2.6)

is

E (yij) = β0 + fx3ij (x1ij) + f2 (x2ij) ,
Cov{yi∣fx3ij (x1i) , f2 (x2i)} =Σ, 1 ≤ i ≤m, 1 ≤ j ≤ n,

(2.10)

where the x3ij correspond to measurements on the categorical variable x3. For example,

if x3ij ∈ {0,1} then we have E(yij) = β0 + f0(x1ij) + f2(x2ij) if x3ij = 0 and E(yij) =
β1 + f1(x1ij) + f2(x2ij) if x3ij = 1. Interaction models such as (2.10) have two important

uses. One of which is the ability to check for additivity in the model. This can be done by

testing the null hypothesis of a true additive model i.e., one without any interaction terms,

against the alternative hypothesis of the additive model involving interaction terms. If

the null hypothesis is accepted, we assume that using the additive model will provide a

reasonable fit to the data. Another important use of interaction models is the ability to

use alternative models when an additive model fails to fit the data well. When the null

hypothesis of an additive model is rejected, appropriate interaction terms are added to

the additive model.

The Gaussian linear mixed model for fitting (2.10) has the same structure as that of

fitting the additive model (2.6), where the only difference is the form of the design matrices

X and Z. An in-depth explanation including examples may be found in Ruppert et al.

(2003).
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2.2.3 Varying coefficient models

Varying coefficient models are another type of multiple-predictor semiparametric regres-

sion model, where the coefficients are allowed to vary as smooth functions of other vari-

ables. The model

E (yij) = f0 (sij) + f1 (sij)xij , Cov{yi∣f0 (si)} =Σ,

1 ≤ i ≤m, 1 ≤ j ≤ n,
(2.11)

is the simplest marginal longitudinal varying coefficient model, where sij are the longitu-

dinal measurements on a continuous predictor variable s and xij are the measurements

on a second predictor x. Model (2.11) shows that s has a modifying effect on the linear

relationship between E(y) and x, which is modelled through the varying coefficients f0(s)
and f1(s). The gaussian linear mixed model for fitting (2.11), has the same structure as

that for fitting the additive model (2.6), where the only difference is the form of the design

matrices X and Z. Relevant details are provided in Section 12.4 of Ruppert et al. (2003).

2.3 Mean field variational Bayes methodology

Each of the marginal longitudinal semiparametric regression models in section 2.2, and

their extensions to d smooth functions, can be treated using the Gaussian linear mixed

model

y∣u,∼ N (Xβ +Zu, Im ⊗Σ) , u∣σ2 ∼ N (0,blockdiag
1≤	≤d (σ2

	 IK�
)) , (2.12)

where K	 corresponds to the number of spline basis functions used in the 
th smooth

function estimate. Maximum likelihood and best prediction can be used as inference

strategies for constructing estimates of the regression function f . Al Kadiri et al. (2010)

discuss that, despite the Gaussian linear mixed model (2.4) being a simple model, fitting

via standard mixed model software such as lme() (Pinheiro et al., 2009) in the R computing

language has not yet been successful. This led Al Kadiri et al. (2010) to consider the

Bayesian inference version and implementation via MCMC. In this section, we discuss and

define a deterministic approximation alternative to MCMC known as mean field variational

Bayes. MFVB scales well to large applications with simple implementation and requires

less computation time than MCMC. However, MFVB cannot generate exact results and

seems to be limited in its approximation accuracy. Nevertheless, in certain circumstances
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MFVB may be very accurate.

We consider working with a hierarchical Bayesian version of (2.12), where β(p × 1),
σ2 = (σ2

1, . . . , σ
2
d) and Σ(n × n) are treated as random. Common prior distributions for

these parameters are:

β ∼ N (0,F) , σ	 ∼ Half-Cauchy (A	) , Σ ∼ Inverse-Wishart (AΣ,BΣ) . (2.13)

An important concern to fitting and inference is the choice of the hyperparameters F, A	,

AΣ and BΣ. When prior beliefs about the model parameters are held, quantities may be

used to represent these beliefs about the hyperparameters. However in most instances,

prior beliefs are unavailable. In cases such as these one may use vague priors. We assume

that the data have been standardised before we impose the following priors for both the

fixed effects and variance hyperparameters:

F = I × 1010, A	 = 1 × 105, AΣ = n, and BΣ = 0.01In. (2.14)

Approximate inference via MCMC is aided by the distribution theoretical result given in

Result 1.4.6. We achieve the following equivalent form of (2.12) and (2.13):

y∣β,u,Σ ∼ N (Xβ +Zu, Im ⊗Σ) , u∣σ2 ∼ N (0,blockdiag
1≤	≤d (σ2

	IK�
)) ,

β ∼ N (0,F ) , σ	
2∣a	 ∼ Inverse-Gamma (1

2 ,
1
a�
) , a	 ∼ Inverse-Gamma (1

2 ,
1

A�
2 ) ,

Σ ∼ Inverse-Wishart (AΣ,BΣ) ,
(2.15)

where A	 and AΣ are positive constants, F and BΣ are both positive definite matrices.

Figure 2.2(a) illustrates the DAG corresponding to (2.15) and is effective in determining

its full conditional distributions. The posterior distributions of β, u, σ	, Σ, and a	, are

not available in closed form. However the distributions of the full conditionals are shown

to be:

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦ ∣rest ∼ N

⎛⎜⎜⎝
⎛⎜⎝C

⊺ (Im ⊗Σ)−1C +
⎡⎢⎢⎢⎢⎢⎣
F−1 0

0 blockdiag
1≤	≤d ( 1

σ2
�

IK�
)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠
−1

C⊺ (Im ⊗Σ)y,

⎛⎜⎝C
⊺ (Im ⊗Σ)C +

⎡⎢⎢⎢⎢⎢⎣
F−1 0

0 blockdiag
1≤	≤d ( 1

σ2
�

IK�
)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠
−1⎞⎟⎟⎠ ,
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(a)
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Σ

uσ2
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Figure 2.2: (a) Directed acyclic graph representation of the Bayesian penalized spline model
(2.15), where a = (a1, . . . , ad), and σ2 = (σ12, . . . , σd2). (b) Moral graph representation of
the DAG in (a).

σ2
	 ∣rest ∼ Inverse-Gamma (12 (K	 + 1) , 12 ∥ u	 ∥2 +a−1	 ) ,
a	∣rest ∼ Inverse-Gamma (1, (σ−2	 +A−2)) and

Σ∣rest ∼ Inverse-Wishart(AΣ +m,
m∑
i=1

(yi −Xiβ −Ziu) (yi −Xiβ −Ziu)⊺ +BΣ) .
An elementary form of MCMC sampling, called Gibbs sampling, can be used to draw

successive samples from these full conditional distributions. However, we demonstrate

fitting via MFVB as it provides for faster fitting and inference to MCMC.

We next consider implementation of MFVB methodology, which involves restricting

the full posterior density function to have the approximate product form

p(β,u,a,σ2,Σ∣y) ≈ q(β,u,a)q(σ2,Σ). (2.16)

Additional factorizations, referred to as induced factorizations, arise from an interaction

between the factorization assumed in the variational posterior distribution and the condi-

tional independence properties of the true joint distribution (Bishop, 2006). Such induced

factorizations can easily be detected using moralisation (described in Sections 1.8.2 and

1.8.3). We show this using the moral graph of Figure 2.2(b). Let A = σ2, B = Σ, and

C = {β,u,y}, then the smallest ancestral set containing A ∪B ∪C is the entire DAG. It

is evident from the moral graph in Figure 2.2(b) that all paths between σ2 and Σ must
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pass through at least one of {β,u,y}. Thus, applying Theorem 1.8.1 we see that

σ2 ⊥⊥Σ∣ {β,u,y} .
Similarly, we can say that {β,u} ⊥⊥ a∣ {y, σ2,Σ}, and hence (2.16) is updated to

q(β,u,a,σ2,Σ) = q(β,u)q(a)q(σ2)q(Σ).
Then, as shown through the derivations in Appendix 2.A,

q∗ (β,u) is a Multivariate Normal density function,

q∗ (σ2
	 )and q∗ (a	)are each Inverse Gamma density functions,

q∗ (Σ) is an Inverse-Wishart density function.

Note that μq(β,u) and Σq(β,u) denote the mean vector and covariance matrix for q∗ (β,u),
and Aq(σ2

�
) and Bq(σ2

�
) denote the shape and rate parameters for q∗ (σ2

	 ). Similar defini-

tions apply for the other density functions. The optimal values of these parameters are

determined using Algorithm 1. The lower bound on the marginal log-likelihood is (the

Set up initial values:

μq(1/σ2
�
) > 0, μq(1/a�) > 0, 1 ≤ 
 ≤ d, Mq(Σ−1) positive definite.

Cycle through:

Σq(β,u) ←
⎧⎪⎪⎨⎪⎪⎩C

⊺ (Im ⊗M q(Σ−1))C + ⎛⎝
F−1 0

0 blockdiag
1≤	≤d (μq(1/σ2

�
)IK�

) ⎞
⎠
⎫⎪⎪⎬⎪⎪⎭
−1

μq(β,u) ←Σq(β,u)C⊺(Im ⊗Mq(Σ−1))y
For 
 = 1, . . . , d:

Bq(a�) ← μq(1/σ2
�
) +A−2 ; μq(1/a�) ← 1/Bq(a�)

Bq(σ2
�
) ← 1

2
(∥ μq(u) ∥2 +tr(Σq(u))) + μq(1/a�)

μq(1/σ2
�
) ← 1

2(K	 + 1)/Bq(σ2
�
)

Bq(Σ) ←B + (y −Cμq(β,u))(y −Cμq(β,u))⊺ +CΣq(β,u)C⊺

Mq(Σ−1) ← (a +m)B−1q(Σ)
until the increase in p(y; q) is negligible.

Algorithm 1: Mean field variational Bayes algorithm for determination of the optimal
parameters in q∗(β,u), q∗(σ2), q∗(a), and q∗(Σ).

42



2.3. MEAN FIELD VARIATIONAL BAYES METHODOLOGY

10 15 20 25

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

true f
MCMC
MFVB

10 15 20 25

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

x

y

Figure 2.3: Fitted curve estimates and pointwise 95% credible sets for both MCMC and
MFVB approaches for fitting the Bayesian penalized spline model (2.15) to simulated data.
Right panel: zoomed view with data points removed.

derivation of which can be found in Appendix 2.B):

log p (y; q) = 1
2
(∑d

	=1K	 + p) − 1
2 m log (2π) − log (π) +∑d

	=1 log Γ (12 (K	 + 1))
−1
2 log ∣F ∣ − log (A) − 1

2tr{F −1 (μq(β)μ⊺q(β) +Σq(β))}
+1
2 log ∣Σq(β,u)∣ − 1

2 ∑d
	=1 (K	 + 1) log (Bq (σ2

	 ))
−1
2 (AΣ +m) log ∣Bq(Σ)∣ − ∑d

	=1 log (μq(1/σ2
�
) +A−2)

+∑d
	=1 μq(1/σ2

�
)μq(1/a�) + 1

2 AΣ (log ∣B	∣) − log (Cn,A)
+ log (Cn,A+m) .

(2.17)

Figure 2.3 illustrates the fitted curves using both MCMC and MFVB for the Bayesian

penalized spline model (2.15). The data were simulated from a version of the marginal

longitudinal nonparametric regression model (2.1) with m = 100, n = 5 and f and Σ as

described in (2.2). The xij are equally spaced but with the starting positions xi1 generated

uniformly from the interval (8,8 + 20
n ) and ε ∼ N (0,1). We used diffuse priors given by

(2.14). For the MCMC approach, samples of size 10,000 were generated where the first

5,000 values were discarded. For the MFVB approach the iterations were terminated

when the relative change in log p (y; q) fell below 10−7. For this example the MCMC and

MFVB fits and pointwise 95% credible sets are almost identical. This suggests that MFVB
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achieves high accuracy for Gaussian response Bayesian penalized spline regression.

2.3.1 Heuristic justification of mean field variational Bayes

Here we are interested in justifying the initial MFVB approximate product restriction

given in (2.16) for the model in (2.15). We consider the marginal longitudinal frequentist

regression model

y ∼ N (Xβ,Im ⊗Σ) . (2.18)

The likelihood-based estimates and confidence intervals attained from (2.18) will be similar

to the Bayes estimates and credible sets based on the marginal longitudinal Bayesian

regression model

y∣β,Σ ∼ N (Xβ,Im ⊗Σ) ,
given that the priors on β andΣ are noninformative. In addition, asymptotic independence

(or parameter orthogonality) of β and Σ in (2.18) is implied by the block-diagonal form

of the Fisher information matrix:

I(β,Σ) = ⎡⎢⎢⎢⎢⎣
X⊺(Im ⊗Σ−1)X 0

0 m
2 (Σ−1 ⊗Σ−1)

⎤⎥⎥⎥⎥⎦ . (2.19)

The derivation of (2.19) is given in Appendix 2.C. In the Bayesian world, such asymptotic

independence corresponds to the approximate product form

p(β,Σ∣y) ≈ p(β∣y)p(Σ∣y),
where the MFVB approximate product restriction q(β,Σ) = q(β)q(Σ) corresponds to the

replacement of approximate with exact equality in this expression. Approaches such as

best prediction (Robinson, 1991) need to be considered for frequentist inference of (2.15)

for the estimation of the random effects vector u. Even so, orthogonality between the

mean and variance parameters of the model is still maintained. Hence, we would expect

the MFVB approximate product restriction in (2.16) to be reasonable and not incur heavy

losses in accuracy.
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2.3.2 Mean field variational Bayes approximate density functions for

entries of Σ

In Section 2.4, we present the results from a comprehensive simulation study that compares

the MFVB methodology against MCMC. We do this comparison on the mean function hex-

iles, f(H1), . . . , f(H5) and the entries of the variance covariance matrix, Σ11,Σ12, . . . ,Σ45.

The mean function hexiles are straightforward to attain, however, the entries of the vari-

ance covariance matrix require additional effort. The derivations of the distributions of

these entries are given in this section.

2.3.2.1 Diagonal entries

The distributions of the diagonal entries of q∗(Σ) are obtained using Theorem 2.3.1.

Theorem 2.3.1. If X is an n×n positive definite matrix that has an Inverse-Wishart

distribution with degrees of freedom a and scale matrix B then the diagonal entries

Xjj are such that:

Xjj ∼ Inverse-Gamma(a − n + 1

2
, 1

2Bjj) , 1 ≤ j ≤ n.

Details of the proof of Theorem 2.3.1 are given in Appendix 2.D. From Algorithm 1 we

see that the optimal q-density of Σ has the form

q∗(Σ) has an Inverse-Wishart (Aq(Σ), Bq(Σ)) density function,

where

Aq(Σ) = a +m, and

Bq(Σ) = B + (y −Cμq(β,u)) (y −Cμq(β,u))⊺ +CΣq(β,u)C⊺.
Now, using Theorem 2.3.1, the diagonal entries take the form

q∗(Σjj) ∼ Inverse-Gamma(1
2(a +m − n + 1),
1
2 {B + (y −Cμq(β,u)) (y −Cμq(β,u))⊺ +CΣq(β,u)C⊺}

jj
),

where j ∈ 1, . . . , n.
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2.3.2.2 Off-diagonal entries

We considered two main approaches to finding the distributions of the off-diagonal entries

of q∗(Σ). These included: (Approach 1) Numerical characteristic function inversion based

on the Fast Fourier Transform; or (Approach 2) Monte Carlo sampling of the off-diagonal

elements in q∗(Σ). It is most desirable to attain these densities exactly, however when

exploring Approach 1 we found that there was no straightforward way of obtaining the

characteristic function of an Inverse-Wishart random matrix. As a result, we used Ap-

proach 2, subject to Monte Carlo error, to finding the distributions of these off-diagonal

elements.

Whilst initially exploring Approach 1 however, we came across some exciting results

involving the characteristic function of the off-diagonal elements of a Wishart random

matrix. This is presented in Theorem 2.3.2.

Theorem 2.3.2. The characteristic function of the off-diagonal entries of a

Wishart(a,B) random matrix X take the form:

E (eitXjj′) = exp{−a
2

n∑
	=1

log (λ	)}
where the λ	 are the eigenvalues of the matrix I − 2iTB−1 and T is a matrix with the

(j, j′) and (j′, j) entries equal to t/2 and all other entries equal to 0.

The proof of Theorem 2.3.2 is given in Appendix 2.E. This Theorem enables one to find

the distributions of the off-diagonal entries of a Wishart random matrix analytically by

making use of the Fast Fourier Transform inversion of the characteristic function.

2.4 Simulation study

A simulation study was carried out for Algorithm 1 in order to asses the accuracy of its

Bayesian inference compared to that of MCMC. 1000 data-sets were generated, which

corresponds to the simulation setting described in Section 5.1 of Al Kadiri et al. (2010).

The nonparametric regression model is of the form

E(yij ∣u) = f(xij), Cov(yi∣u) =Σ, 1 ≤ i ≤ 100, 1 ≤ j ≤ 5, (2.20)
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with

f (xi) = 1 + 1
2Φ(2x − 36

5
) and Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.122 0.098 0.078 0.063 0.050

0.098 0.122 0.098 0.078 0.063

0.078 0.098 0.122 0.098 0.078

0.063 0.078 0.098 0.122 0.098

0.050 0.063 0.078 0.098 0.122

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Φ is the standard normal distribution function and (2.20) is an example of the

special case of the Bayesian hierarchical model (2.15) with d = 1.

There are various approaches by which the accuracy of a variational Bayes approximate

density function q∗(θ) may be assessed with respect to the exact posterior density p(θ∣y).
Avoiding approximate inference methods would be ideal, however, using MCMC with

sufficiently large samples can easily be used to approximate p(θ∣y) quite well. A detailed

explanation is provided in Section 1.9.

Many parameters are of interest when conducting an assessment of MFVB against

MCMC. We have chosen to work with the mean function hexiles, f(H1), . . . , f(H5) and

the entries of the variance covariance matrix, Σ11,Σ12, . . . ,Σ45. The mean function hexiles

are straightforward to attain, however, the entries of the variance covariance matrix require

additional effort. The derivations of the distributions of these entries were given in the

previous section. The accuracy assessments that follow are based on MCMC samples

using BUGS iterations of size 5,000. A thinning factor of 5 was applied to post burn-in

samples of size 5,000. This resulted in MCMC samples of size 1,000 for density estimation.

The density estimates were obtained using the binned kernel density estimate bkde()

function in the R package Kernsmooth (Wand & Ripley, 2009). The MFVB iterations

were terminated when the increase in log p(y; q) fell below 10−7. Figure 2.4 summarizes

the accuracy results whilst Figure 2.5 plots the variational Bayes and MCMC approximate

posteriors for the first simulated dataset. The mean function at each hexile and each entry

of Σ shows high accuracy, with most accuracy levels above 85%.

Another crucial type of accuracy assessment is the comparison between the advertised

coverage of variational Bayes approximate credible intervals and the true coverage. Table

2.1 shows the percentages of the true parameter coverage for the approximate 95% credible

intervals formed from the variational Bayes posterior densities with 0.025 probability mass

in each tail. The coverage overall is very good and does not fall below 93%.
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Figure 2.4: Summary of the simulation for the marginal longitudinal nonparametric re-
gression model (2.1), where f(Hi) is the mean function at hexile i. For the mean function
at each hexile and each entry of Σ, the accuracy values are summarized as a boxplot.

Σ11 Σ22 Σ33 Σ44 Σ55 Σ12 Σ13 Σ14 Σ15 Σ23

95% 95% 96% 94% 95% 95% 94% 94% 95% 95%

Σ24 Σ25 Σ34 Σ35 Σ45 f(H1) f(H2) f(H3) f(H4) f(H5)
95% 95% 94% 95% 94% 95% 95% 95% 93% 94%

Table 2.1: Percentage coverage of true parameter values by approximate 95% credible inter-
vals based on variational Bayes approximate posterior density functions. The percentages
are based on 1000 replications.

2.4.1 Assessment of speed

To assess the gain in time savings by using MFVB, we monitored the time taken to fit each

model based on a different replication in the simulation study. The computations for this

study were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes

random access memory). The computation times for each approach are summarised in

Table 2.2.

MCMC MFVB

282.555 (4.506) 3.064 (0.278)

Table 2.2: Average (standard deviation) times in seconds for the simulation study com-
paring MCMC and MFVB fitting of the model in (2.20).

The average computing time for MFVB is about 3 seconds which is substantially faster
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Figure 2.5: Variational Bayes and MCMC approximate posterior densities for the first
simulated data set.

than the 4.7 minutes taken by MCMC i.e., 94 times faster. It is evident that the speed

gains achieved by MFVB needs to be traded off against the accuracy losses which are

incurred by restriction (2.16).
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2.5. APPLICATION

Making time comparisons completely fair between MFVB and MCMC is difficult, since

convergence for each approximation method is different. The number of iterations used

for MFVB and the number of samples used for MCMC was sufficient for convergence in

this particular simulation study setting. However, these values will change depending on

the type of application.

2.5 Application

The Bayesian additive/interaction model (2.10) was fitted to data from a nutritional epi-

demiology study (source: Kipnis et al., 2003), which was presented in Section 5.2 of

Al Kadiri et al. (2010). Convergence for both MCMC and MFVB was assessed in the

same way as given in the previous section. Keeping with the notation of (2.10), the

variables are:

y = logarithm of intake of protein as measured by the biomarker urinary nitrogen,

x1 = body mass index,

x2 = logarithm of intake of protein as measured by a 24-hour recall instrument,

x3 = gender.

Figure 2.6 shows the MCMC and MFVB estimates of fmale, ffemale and f2 and the corre-

sponding 95% pointwise credible sets. The MCMC fit took about 1 hour and 5 minutes,
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Figure 2.6: Estimated functions for the additive/interaction model for the nutritional epi-
demiology data using MCMC and MFVB. The dashed curves correspond to 95% pointwise
credible sets.

whilst the MFVB fit took 20 seconds.
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2.6. DISCUSSION

2.6 Discussion

The aim of this chapter was to develop a fast deterministic approach to MCMC to shorten

estimation time. We also sought to address the marginal longitudinal regression problem

and some of its semiparametric extensions. As a result we have derived a MFVB algorithm

for fast approximate inference in semiparametric regression. The central finding here is

that, for using the marginal longitudinal semiparametric regression model, MFVB achieves

excellent accuracy when compared to MCMC for the main parameters of interest. In

addition, the algorithm is one of the first variational algorithms to involve estimation of

an unstructured covariance matrix. The real data example presented in Al Kadiri et al.

(2010) takes almost an hour for MCMC to run on a contemporary laptop using BUGS.

The MFVB algorithm developed in this chapter, fits the same data in seconds with very

similar results. The simulation study shows evidence of significant speed and accuracy

attributes of MFVB against the MCMC benchmark.
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2.A. DERIVATION OF ALGORITHM 1

2.A Derivation of algorithm 1

Algorithm 1 depends on the following derivations of the optimal density functions. Con-

stants with respect to the function argument are denoted by ‘const’. The MFVB calcula-

tions rely primarily on the following expressions for the full conditional distributions:

log p (β,u∣rest) = −1
2

⎛⎜⎝
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺ ⎛⎜⎝C

⊺ (Im ⊗Σ)−1C +
⎡⎢⎢⎢⎢⎢⎣
F−1 0

0 blockdiag
1≤	≤d (σ2

	IK�
)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦ − 2

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺
C⊺ (Im ⊗Σ)−1 y⎞⎟⎠ + const,

log p (σ2
	 ∣rest) = (1

2 (K	 + 1) − 1) log (σ2
	 ) − (12∥u	∥2 + a−1	 ) /σ2

	 + const,

log p (a	∣rest) = −2 log (a	) − (σ2
	 +A−2) /a	 + const,

log p (Σ∣rest) = −AΣ +m + n + 1

2
log ∣Σ∣

−1
2tr{[

m∑
i=1

(yi −Xiβ −Ziu) (yi −Xiβ −Ziu)⊺ +BΣ]Σ−1} + const.

Expressions for μq(β,u) and Σq(β,u)

We begin with

log q∗ (β,u) = Eq {log p (β,u∣rest)} + const

= −1
2

⎛⎜⎝
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺
(C⊺ (Im ⊗Mq(Σ−1))C

+
⎡⎢⎢⎢⎢⎢⎣
F−1 0

0 blockdiag
1≤	≤d (μq(1/σ2

�
)IK�

)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
−2⎡⎢⎢⎢⎢⎣

β

u

⎤⎥⎥⎥⎥⎦
⊺
C⊺ (Im ⊗Mq(Σ−1))y⎞⎟⎠ + const.

Therefore,

q∗ (β,u) is the N (μq(β,u),Σq(β,u)) density function,

where

Σq(β,u) = ⎛⎜⎝C
⊺ (Im ⊗Mq(Σ−1))C +

⎡⎢⎢⎢⎢⎢⎣
F−1 0

0 blockdiag
1≤	≤d (μq(1/σ2

�
)IK�

)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠
−1
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2.A. DERIVATION OF ALGORITHM 1

and

μq(β,u) =Σq(β,u)C⊺ (Im ⊗Mq(Σ−1))y.

Expressions for Bq(σ2
�
) and μq(1/σ2

�
)

Next, we have

log q∗ (σ2
	 ) = Eq {log p (σ2

	 ∣rest)} + const

= (−1
2 (K	 + 1) − 1) log (σ2

	 ) − (12Eq∥u	∥2 + μq(1/a�)) /σ2
	 + const.

Therefore,

q∗ (σ2
	 ) is the Inverse-Gamma (1

2 (K	 + 1) ,Bq(σ2
�
)) density function,

where

Bq(σ2
�
) = 1

2
(∥μq(u�)∥2 + tr (Σq(u�))) + μq(1/a�).

In addition, using Result 1.4.3, this gives

μq(1/σ2
�
) = 1

2 (K	 + 1) /Bq(σ2
�
).

Expressions for Bq(a�) and μq(1/a�)

Similarly,

log q∗ (a	) = Eq {log p (a	∣rest)} + const

= −2 log (a	) −Eq (σ2
	 +A−2) /a	 + const

= (−1 − 1) log (a	) − (μq(1/σ2
�
) +A−2) /a	 + const.

Therefore

q∗ (a	) is the Inverse-Gamma (1,Bq(a�)) density function,

where

Bq(a�) = μq(1/σ2
�
) +A−2.

Also, making use of Result 1.4.3, we get

μq(1/a�) = 1/Bq(a�).
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2.A. DERIVATION OF ALGORITHM 1

Expressions for Bq(Σ) and Mq(Σ−1)

Finally,

log q∗ (Σ) = Eq {log p (Σ∣rest)} + const

= −1
2 (AΣ +m + n + 1) log ∣Σ∣

−1
2tr [

m∑
i=1

Eq(β,u) {(yi −Xiβ −Ziu) (yi −Xiβ −Ziu)⊺ +BΣ}Σ−1]
+const

= −1
2 (AΣ +m + n + 1) log ∣Σ∣

−1
2tr([

m∑
i=1

{(yi −Ciμq(β,u)) (yi −Ciμq(β,u))⊺ +CiΣq(β,u)CT
i }

+BΣ]Σ−1) + const.

Therefore,

q∗ (Σ) is the Inverse-Wishart (AΣ +m, Bq(Σ)) density function,

where

Bq(Σ) = BΣ + m∑
i=1

[(yi −Ciμq(β,u)) (yi −Ciμq(β,u))⊺ +CiΣq(β,u)C⊺i ] .
Lastly, making use of Result 1.4.7 gives

Mq(Σ−1) = (AΣ +m)B−1q(Σ).
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2.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

2.B Derivation for the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given at (2.17) is

log p (y; q) = 1
2 (

d∑
	=1

K	 + p) − m
2 log (2π) − log (π) + d∑

	=1
log Γ (12 (K	 + 1))

−p
2 log (σ2

β) − log (A) − 1
2σ2

β

{∥μq(β)∥2 + tr (Σq(β))} + 1
2 log ∣Σq(β,u)∣

−1
2

d∑
	=1

(K	 + 1) log (Bq(σ2
�
)) − 1

2 (AΣ +m) log ∣Bq(Σ)∣ + d∑
	=1

μq(1/σ2
�
)μq(1/a�)

− d∑
	=1

log (μq(1/σ2
�
) +A−2) + 1

2 AΣ (log ∣B	∣) − log (Cn,A) + log (Cn,A+m) .

Derivation: The lower bound on the marginal log-likelihood is achieved through the fol-

lowing expression:

log p (y; q) = Eq {log p (y,β,u,σ2,a,Σ) − log q∗ (β,u,σ2,a,Σ)}
= Eq{log p (y∣β,u,Σ)} +Eq{log p (β,u ∣σ2) − log q∗ (β,u)}

+Eq{log p (σ2∣a) − log q∗ (σ2)} +Eq{log p (a) − log q∗ (a)}
+Eq{log p (Σ) − log q∗ (Σ)}.

First we note that

log p (y∣β,u,Σ) = −m
2 log (2π) − m

2 log∣Σ∣
−1
2 tr{(Im ⊗Σ)−1 (y −Xβ −Zu) (y −Xβ −Zu)⊺}.

Therefore,

Eq{log p (y∣β,u,Σ)} = −m
2 log (2π) − m

2 Eq (log ∣Σ∣)
−1
2 tr{(Im ⊗Mq(Σ−1)) [CΣq(β,u)C⊺

+(y −Cμq(β,u)) (y −Cμq(β,u))⊺]} .
Next,

Eq{log p (β,u ∣σ2) − log q∗ (β,u)}
= −p

2 log (σ2
β) − 1

2

d∑
	=1

K	 Eq {log (σ2
	 )} − 1

2

d∑
	=1

Eq (1/σ2
	 )Eq (∥u	∥2) + 1

2 log ∣Σq(β,u)∣
+1
2 (

d∑
	=1

K	 + p)
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= −1
2p log (σ2

β) − 1
2

d∑
	=1

K	 Eq (log (σ2
	 )) − 1

2σ2
β

{∥μq(β)∥2 + tr (Σq(β))}
−1
2

d∑
	=1

μq(1/σ2
�
) {∥μq(u�)∥2 + tr (Σq(u�))} + 1

2 log ∣Σq(β,u)∣ + 1
2 (

d∑
	=1

K	 + p) .
Next,

log p (σ2 ∣a) − log q∗ (σ2)
= log

⎡⎢⎢⎢⎢⎣
d∏
	=1

1
a�

Γ (12) (σ
2
	 )−12−1 exp⎛⎝−

1
a�

σ2
	

⎞
⎠
⎤⎥⎥⎥⎥⎦

− log
⎡⎢⎢⎢⎢⎢⎢⎣

d∏
	=1

Bq(σ2
�
)
1
2 (K�+1)

Γ (12 (K	 + 1)) (σ2
	 )−12 (K�+1)−1 exp⎛⎝

−Bq(σ2
�
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⎞
⎠
⎤⎥⎥⎥⎥⎥⎥⎦

= −1
2

d∑
	=1

log (a	) − log Γ (12) − 3
2

d∑
	=1

log (σ2
	 ) − d∑

	=1
a−1	 (1/σ2

	 ) + d∑
	=1

Bq(σ2
�
)/σ2

	

+ d∑
	=1

(1
2 (K	 + 1) − 1) log (σ2

	 ) + d∑
	=1

log Γ (12 (K	 + 1)) − 1
2

d∑
	=1

(K	 + 1) log (Bq(σ2
�
))

= −1
2

d∑
	=1

log (a	) + d∑
	=1

log Γ (12 (K	 + 1)) − 1
2 log (π) +

d∑
	=1

(Bq(σ2
�
) − a−1	 ) (1/σ2

	 )
+1
2

d∑
	=1

K	 log (σ2
	 ) − 1

2

d∑
	=1

(K	 + 1) log (Bq(σ2
�
)) .

This means that

Eq {log p (σ2 ∣a) − log q∗ (σ2)} = −1
2

d∑
	=1

Eq {log (a	)} + d∑
	=1

log Γ{1
2 (K	 + 1)}

−1
2 log (π) +

d∑
	=1

(Bq(σ2
�
) − μq(1/a�))μq(1/σ2

�
)

+1
2

d∑
	=1

K	 Eq {log (σ2
	 )} − 1

2

d∑
	=1

(K	 + 1) log (Bq(σ2
�
)) .

In addition,

log p (a) − log q∗ (a)
= − log (A) − 1

2 log (π) + 1
2

d∑
	=1

log (a	) − d∑
	=1

log (Bq(a�)) +
d∑
	=1

(Bq(a�) −A−2) (1/a	)
= − log (A) − 1

2 log (π) + 1
2

d∑
	=1

log (a	) − d∑
	=1

log (μq(1/σ2
�
) +A−2) + d∑

	=1
μq(1/σ2

�
)/a	
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and so

Eq {log p (a) − log q∗ (a)} = − log (A) − 1
2 log (π) + 1

2

d∑
	=1

Eq (log (a	))
− d∑
	=1

log (μq(1/σ2
�
) +A−2) + d∑

	=1
μq(1/σ2

�
)μq(1/a�).

Next,

log p (Σ) − log q∗ (Σ) = − log (Cn,A) + log (Cn,A+m) + m
2 log ∣Σ∣ + 1

2A log ∣B∣
−1
2(A +m) log ∣Bq(Σ)∣ − 1

2tr (BΣ−1) + 1
2tr (Bq(Σ)Σ−1) .

Hence,

Eq {log p (Σ) − log q∗ (Σ)} = − log (Cn,A) + log (Cn,A+m) + m
2 Eq (log ∣Σ∣) + 1

2A log ∣B∣
−1
2(A +m) log ∣Bq(Σ)∣ + 1

2tr ((Bq(Σ) −B)Mq(Σ−1)) .
Next, note that

d∑
	=1

(Bq(σ2
�
) − μq(1/a�))μq(1/σ2

�
) = d∑

	=1
[1
2
{∥μq(u�)∥2 + tr (Σq(u�))} + μq(1/a�)

−μq(1/a�)]μq(1/σ2
�
)

= 1
2

d∑
	=1

μq(1/σ2
�
) (∥μq(u�)∥2 + tr (Σq(u�))) .

We also note that

1
2 tr{(Bq(Σ) −B)Mq(Σ−1)}

= 1
2 tr([m∑

i=1
{(yi −Ciμq(β,u)) (yi −Ciμq(β,u))⊺ +CiΣq(β,u)C⊺i }]M q(Σ−1))

= 1
2 tr [(Im ⊗M q(Σ−1)){(y −Cμq(β,u)) (y −Cμq(β,u))⊺ +CΣq(β,u)C⊺}]

The cancellations lead by these equalities leads to the lower bound expression given in

(2.17).

57



2.C. DERIVATION OF THE FISHER INFORMATION MATRIX FOR THE LINEAR
MARGINAL LONGITUDINAL MODEL

2.C Derivation of the Fisher information matrix for the lin-

ear marginal longitudinal model

We derive the Fisher information matrix for the frequentist Gaussian marginal longitudinal

regression model:

y ∼ N (Xβ, Im ⊗Σ) .
The log-likelihood of (β,Σ) is


(β,Σ) = −nm
2 log(2π) − m

2 log ∣Σ∣ − 1
2(y −Xβ)⊺(Im ⊗Σ−1)(y −Xβ).

To begin, with the help of Result 1.4.1 (g), we take the first differential of 
(β,Σ) with

respect to β:

dβ
(β,Σ) = 1
2 (−Xdβ)⊺ (Im ⊗Σ−1)(y −Xβ) − 1

2(y −Xβ)⊺(Im ⊗Σ−1)Xdβ

= (y −Xβ)⊺(Im ⊗Σ−1)Xdβ

and then the second differential of 
(β,Σ) with respect to β is

d2β
(β,Σ) = (−Xdβ)⊺ (Im ⊗Σ−1)Xdβ

= −(dβ)⊺X⊺(Im ⊗Σ−1)X (dβ) ,
so, from Theorem 1.4.2, we see that

Hβ
(β,Σ) = −X⊺(Im ⊗Σ−1)X,

and so, the β block of I(β,Σ) is

−E{Hβ 
(β,Σ)} =X⊺(Im ⊗Σ−1)X.

In order to check that the maximum likelihood estimates of β and Σ are indeed uncorre-

lated, we next deal with

dvec(Σ) {dβ 
(β,Σ)} = (y −Xβ)⊺d{(Im ⊗Σ−1)}dβ.
However, we see that

E [dvec(Σ) {dβ 
(β,Σ)}] = 0.
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It then follows that I(β,Σ) is of block-diagonal form. We next move on to find the Σ

block of the information matrix.

dvec(Σ)
(β,Σ) = −m
2 d (log ∣Σ∣) − 1

2(y −Xβ)⊺d(Im ⊗Σ−1)(y −Xβ)
Then, using Results 1.4.1 (c), (e) and (f), we get

dvec(Σ)
(β,Σ) = −m
2 tr (Σ−1dΣ) + 1

2(y −Xβ)⊺ {Im ⊗ (Σ−1dΣΣ−1)} (y −Xβ)
and so

d2vec(Σ)
(β,Σ) = m
2 tr{Σ−1 (dΣ)Σ−1 (dΣ)}
−1
2(y −Xβ)⊺ {Im ⊗ (Σ−1 (dΣ)Σ−1 (dΣ)Σ−1)} (y −Xβ)

−1
2(y −Xβ)⊺ {Im ⊗ (Σ−1 (dΣ)Σ−1 (dΣ)Σ−1)} (y −Xβ)

= m
2 tr{Σ−1 (dΣ)Σ−1 (dΣ)}
−(y −Xβ)⊺ {Im ⊗ (Σ−1 (dΣ)Σ−1 (dΣ)Σ−1)} (y −Xβ).

With the help of Results 1.4.18, 1.4.14 and 1.4.15, we see that

−E{d2vec(Σ)
(β,Σ)} = −m
2 tr{Σ−1 (dΣ)Σ−1 (dΣ)}
+tr [Im ⊗ {ΣΣ−1 (dΣ)Σ−1 (dΣ)Σ−1}]

= −m
2 tr{Σ−1 (dΣ)Σ−1 (dΣ)}
+m tr{ΣΣ−1 (dΣ)Σ−1 (dΣ)Σ−1}

= m
2 tr{Σ−1 (dΣ)Σ−1 (dΣ)} .

Then, using Result 1.4.16, we get

−E{d2vec(Σ)
(β,Σ)} = m
2 vec(dΣ)⊺(Σ−1 ⊗Σ−1)vec(dΣ).

Therefore,

Hvec(Σ)
(β,Σ) = −m
2 (Σ−1 ⊗Σ−1),

and the full information matrix is:

I(β,Σ) = ⎡⎢⎢⎢⎢⎣
X⊺(Im ⊗Σ−1)X 0

0 m
2 (Σ−1 ⊗Σ−1)

⎤⎥⎥⎥⎥⎦ .
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2.D. PROOF OF THEOREM 2.3.1

2.D Proof of Theorem 2.3.1

Theorem 3.4.7 (a) of Mardia et al. (1979) states that if

X ∼Wishart (a,B) , a > n, B positive definite, (2.21)

then the ratio c⊺Bc/c⊺X−1c has a χa−n+12 distribution for any fixed n× 1 vector c. If we

let c = [0 1 0]⊺, such that B22 = c⊺Bc and (X−1)
22
= c⊺X−1c. Then,

B22(X−1)
22

∼ χ2
a−3+1

and making use of Result 1.4.5, this is equivalent to

B22(X−1)
22

∼ Gamma(a − 3 + 1

2
,
1

2
) .

Using Result 1.4.4 we see that:

(X−1)
22

B22
∼ Inverse-Gamma(a − 3 + 1

2
,
1

2
) .

Therefore using Results 1.4.2 and 1.4.8, the [2,2] entry of an Inverse-Wishart random

matrix X−1 has distribution

(X−1)
22
∼ Inverse-Gamma(a − 3 + 1

2
, 1
2B22) .

The distribution of the [1,1] and [3,3] entries of X−1 have similar forms. We have shown

this for a 3 × 3 random matrix, however this applies for general n × n random matrices

also. Thus, for a general n × n positive definite matrix X that is distributed

X ∼ Inverse-Wishart(a,B),
its diagonal entries have the following distribution:

Xjj ∼ Inverse-Gamma(a − n + 1

2
, 1
2Bjj) , 1 ≤ j ≤ n.
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2.E. PROOF OF THEOREM 2.3.2

2.E Proof of Theorem 2.3.2

The characteristic function of a Wishart random matrix X with distribution

X ∼ Inverse-Wishart (a,B)
is

E [exp{i tr (XT )}] = ∣I − 2iTB−1∣−a/2.
If we let X be of dimension 3 × 3 and focus on finding the characteristic function of the

[1,2] and [2,1] off-diagonal entries of X, we set

T =
⎡⎢⎢⎢⎢⎢⎢⎣
0 t 0

t 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

so that tr (XT ) = 2tX12. Therefore the characteristic function becomes

E {exp (2itX12)} = ∣I − 2iTB−1∣−a/2
= exp{−a

2 log ∣I − 2iTB−1∣} ,
and since the determinant of a matrix is equal to the product of the eigenvalues of that

matrix, we get

E {exp (2itX12)} = exp{−a
2

n∑
	=1

log (λ	)} ,
where the λ	,1 ≤ 
 ≤ n, are the eigenvalues of the matrix ∣I − 2iTB−1∣. This can also be

shown for Wishart random matrices of dimension n × n.
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Chapter 3

Variational inference for

heteroscedastic semiparametric

regression

3.1 Introduction

In many situations considering real data, the assumption of constant conditional vari-

ance on the regressors is erroneous, albeit used routinely in parametric and nonparametric

regression. Ignorance of significant heteroscedasticity will lead to misguided inferential

statistics such as prediction intervals. A remedy for this is to employ heteroscedas-

tic nonparametric regression which overcomes these complications. For a set of data,

(xi, yi), 1 ≤ i ≤ n, we replace the homoscedastic nonparametric regression model

E(yi) = f(xi), Var(yi) = σ2

with

E(yi) = f(xi), Var(yi) = g(xi), (3.1)

where the variance function g is estimated simultaneously with the mean function f . Sev-

eral approaches already exist for fitting (3.1), some of which are encompassed in Ruppert

et al. (2003) and Rigby & Stasinopoulos (2005). However, graphical model representa-

tions of mixed model-based penalized splines (Wand, 2009) have shown to be an effective

The content of this chapter is published as: Menictas, M and Wand. M.P. (2015). Variational
inference for heteroscedastic semiparametric regression. Australian and New Zealand Journal of Statistics,
57, Number 1, 119–138. This research was also presented at the Australian Statistical Conference in
conjunction with the Institute of Mathematical Statistics Annual Meeting, Sydney, 2014.
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3.2. MODEL DESCRIPTION

approach, especially when considering the extendability of models arising from (3.1).

In this chapter we investigate a relatively new modification of MFVB known as non-

conjugate variational message passing (Knowles & Minka, 2011), which aids in the adap-

tation of heteroscedasticity to the appropriate model whilst also involving only closed form

algebraic expressions. Even though we focus on univariate nonparametric regression, the

modularity of our approach allows straightforward extensions to more complex models.

This is known as the locality property of MFVB and is described in section 1.8.1 and in

greater detail in section 3 of Wand et al. (2011). For example, if a complex graphical model

includes a component where one variable is modelled as a heteroscedastic nonparametric

regression function of another variable, the variational inference for the parameters in that

section of the graph can be developed using the methodology in this chapter.

Lázaro-Gredilla & Titsias (2011) and Nott et al. (2012) have also developed variational

inference for heteroscedastic regression models, although the latter contribution was re-

stricted to linear mean and log-variance functions. Simultaneous nonparametric mean and

variance function estimation aided by an elegant Gaussian process approach was achieved

by Lázaro-Gredilla & Titsias (2011). Their strategy involved full-rank nonparametric func-

tion estimators with Gauss-Hermite quadrature for variance function estimation. Bugbee

et al. (2015) use MFVB with an embedded Laplace approximation to account for semi-

parametric regression with heteroscedasticity. Our approach is different by using low-rank

penalized splines, as well as a non-conjugate MFVB algorithm that involves closed form

updates, making it more susceptible to increasingly larger data sets.

In Section 3.2, we provide details on the Bayesian penalized spline model for simultane-

ous mean and variance function estimation based on univariate data. Section 3.3 provides

a description of the variational inference methodology used to formulate Algorithm 2. In

Sections 3.4 and 3.5 we present numerical analyses and results which confirm the speed

achieved by MFVB.

3.2 Model description

The generic form of the Gaussian heteroscedastic nonparametric regression model is of the

form

yi
ind.∼ N (f(xi), g(xi)) , 1 ≤ i ≤ n, (3.2)
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3.2. MODEL DESCRIPTION

where (xi, yi) represents the ith predictor/response pair of a regression data-set and the

functions f and g are real valued smooth functions. The quantity g is referred to as the

variance function, and
√
g is the standard deviation function. Fitting of (3.2) using mixed

model-based penalized splines (e.g. Ruppert et al., 2003) requires the following structural

forms of f and g:

f(x) = β0 + β1 x + Ku∑
k=1

uk z
u
k (x), uk

ind.∼ N(0, σ2
u)

and g(x) = exp
⎛
⎝γ0 + γ1 x + Kv∑

k=1
vk z

v
k(x)⎞⎠, vk

ind.∼ N(0, σ2
v).

(3.3)

The zuk , 1 ≤ k ≤ Ku and zvk , 1 ≤ k ≤ Kv are spline bases of sizes Ku and Kv respectively.

Here we use suitably transformed cubic O’Sullivan splines as our default for the zuk and

zuk , as explained in Section 4 of Wand & Ormerod (2008). Further, we allow for Ku and

Kv to comprise different sizes. The prior specifications on the model parameters are

β0, β1
ind.∼ N(0, σ2

β), γ0, γ1
ind.∼ N(0, σ2

γ), σu ∼ Half-Cauchy(Au) and σv ∼ Half-Cauchy(Av),
where σβ , σγ ,Au,Av > 0 are hyperparameters to be specified by the user. Under the

assumption that the data has been transformed to have zero mean and unit variance, the

default setting we employ for the hyperparameters throughout this chapter are:

σβ = σγ = Au = Av = 105. (3.4)

The complete Bayesian hierarchical model corresponding to (3.2) is

y∣β,γ,u,v ∼ N (Xβ +Zuu, diag{exp (Xγ +Zvv)}) ,
u∣σ2

u ∼ N (0, σ2
uIKu) , v∣σ2

v ∼ N (0, σ2
vIKv) ,

β ∼ N (0, σ2
βI2) , γ ∼ N (0, σ2

γI2) ,
σ2
u∣au ∼ Inverse-Gamma(12 ,1/au), au ∼ Inverse-Gamma(12 ,1/A2

u),
σ2
v ∣av ∼ Inverse-Gamma(12 ,1/av), av ∼ Inverse-Gamma(12 ,1/A2

v),

(3.5)

where β is the 2 × 1 vector of fixed effects containing (β0, β1) and γ defined similarly.

Further, u is the Ku × 1 vector containing (u1, . . . , uKu), v is a Kv × 1 vector defined

similarly, and σ2
u and σ2

v are variance components corresponding to u and v respectively.

The design matrices, X, Zu and Zv, are defined to be

X ≡ [1 xi]1≤i≤n, Zu ≡ [ zuk (xi)
1≤k≤Ku

]
1≤i≤n and Zv ≡ [ zvk(xi)

1≤k≤Kv

]
1≤i≤n.
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3.3. VARIATIONAL INFERENCE ALGORITHM

It is beneficial to merge the mean function coefficients and variance function coefficients

into single vectors:

ν ≡ ⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦ and ω ≡ ⎡⎢⎢⎢⎢⎣
γ

v

⎤⎥⎥⎥⎥⎦ . (3.6)

Combining the corresponding design matrices Cν ≡ [X Zu] and Cω ≡ [X Zv] then allows

us to use the following notation

Xβ +Zuu = Cνν and Xγ +Zvv = Cω ω.

The directed acyclic graph corresponding to the model shown in (3.5) is shown in Figure

3.1.

β y

σ2
u

au

u

γ

σ2
v

av

v

ν ω

Figure 3.1: Directed acyclic graph for the model conveyed in (3.5). The shaded node
corresponds to the observed data vector. Random effects and auxiliary variables are referred
to as hidden nodes. The dashed boxes indicate that β and u are combined into a vector
denoted by ν and ω is the combination of γ and v.

3.3 Variational inference algorithm

Having discussed the elementary design of our model, we next provide the methodology

required to achieve variational bayesian inference for (3.5). Ordinary implementation of

MFVB methodology involves restricting the full posterior density function to have the

approximate product form

p(ν, ω, a, σ2∣y) ≈ q(ν)q(ω) q(σ2
u, σ

2
v) q(au, av), (3.7)

where a = (au, av) and σ2 = (σ2
u, σ

2
v). Additional factorisations can easily be detected us-

ing moralisation. After moralising (see Definition 1.8.9) it becomes clear that all paths be-
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3.3. VARIATIONAL INFERENCE ALGORITHM

tween σ2
u and σ2

v must visit at least one of the components in the set {y,ν,ω}. Using The-

orem 1.8.1, σ2
u is separated from σ2

v given {y,ν,ω}. Similarly, au ⊥⊥ av ∣ {y,ν,ω, σ2
u, σ

2
v}.

Therefore, (3.7) reduces to

q(ν)q(ω) q(σ2
u, σ

2
v) q(au, av) = q(ν)q(ω) q(σ2

u) q(σ2
v) q(au) q(av). (3.8)

Under this product restriction, the parameters ν, σ2
u, σ

2
v , au and av all have closed form

expressions for their full conditional distributions

p(ν ∣rest) ∼ N
⎛
⎝
⎧⎪⎪⎨⎪⎪⎩C

⊺
νdiag (e−Cωω)Cν +

⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 σ−2u IKu

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭C

⊺
νdiag (e−Cωω)y,

⎧⎪⎪⎨⎪⎪⎩C
⊺
νdiag (e−Cωω)Cν +

⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 σ−2u IKu

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
−1⎞⎟⎠

p(σ2
u∣rest) ∼ Inverse-Gamma (12 (Ku + 1) , 1

2∥u∥2 + a−1u )
p(σ2

v ∣rest) ∼ Inverse-Gamma (12 (Kv + 1) , 1
2∥v∥2 + a−1v )

p(au) ∼ Inverse-Gamma (1, σ−2u +A−2u )
p(av) ∼ Inverse-Gamma (1, σ−2v +A−2v ) .

However, the optimal posterior density function of ω is

q∗ (ω) ∝ exp [Eq(−ω) {log p (ω∣rest)}] , (3.9)

which involves intractable multivariate integrals that are not available in closed form

expressions. A remedy in this instance is to work with the product restriction

p(ν, ω, a, σ2∣y) ≈ q(ν) q(ω;μq(ω), Σq(ω)) q(a) q(σ2), (3.10)

where

q (ω;μq(ω),Σq(ω)) is the N (μq(ω),Σq(ω)) density function. (3.11)

Thus, the marginal log-likelihood is

log p(y; q, μq(ω), Σq(ω)) ≡ Eq [log p(ν, ω, a, σ2, y)
− log {q(ν) q(ω;μq(ω), Σq(ω)) q(a) q(σ2)}] (3.12)

and choosing μq(ω) and Σq(ω) to maximise (3.12) corresponds to minimization of the

Kullback-Leibler divergence. Knowles & Minka (2011) termed this approach non-conjugate

variational message passing, since it offers a way of getting around the non-conjugacies of
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3.3. VARIATIONAL INFERENCE ALGORITHM

ordinary MFVB. This approach is explained in more detail in Section 1.7.

For fixed (μq(ω), Σq(ω)), application of ordinary MFVB, with q∗(ω) omitted, gives

q∗(ν) is a Normal (μq(ν), Σq(ν)) density function,

q∗(σ2
u) is an Inverse-Gamma (1

2(Ku + 1), Bq(σ2
u)) density function,

q∗(σ2
v) is an Inverse-Gamma (1

2(Kv + 1), Bq(σ2
v)) density function,

q∗(au) is an Inverse-Gamma (1, Bq(au)) density function

and q∗(av) is an Inverse-Gamma (1, Bq(av)) density function,

(3.13)

for parameters μq(ν) and Σq(ν), the mean and covariance matrix of q∗(ν), Bq(σ2
u), the rate

parameter of q∗(σ2
u), Bq(σ2

v), the rate parameter of q∗(σ2
v), Bq(au), the rate parameter of

q∗(au) and Bq(av), the rate parameter of q∗(av).
With assistance from Knowles & Minka (2011) who propose a fixed-point iteration

scheme for maximizing (3.12) and Wand (2014) who provides simplified fixed point updates

for the Multivariate Normal q-density parameters, such as that shown in (3.11), we can

now present Algorithm 2.

Convergence in Algorithm 2 is assessed using the variational lower bound on the ap-

proximate marginal log-likelihood, denoted by log p(y; q,μq(ω),Σq(ω)) and has the follow-

ing expression:

log p(y; q,μq(ω),Σq(ω)) = 1
2 (Ku +Kv + 4) − n

2 log(2π) + log Γ (12(Ku + 1)) − 2 log(π)
+ log Γ (12(Kv + 1)) − log(Au) − log(Av) − 1

21
T (Cωμq(ω))

−1
21
⊺ {μq(r2ν) ⊙ exp (ψq(ω))} − log(σ2

β) − log(σ2
γ)

+1
2 log ∣Σq(ν)∣ + 1

2 log ∣Σq(ω)∣ − 1
2σ2

β

(∥μq(β)∥2 + tr(Σq(β)))
− 1
2σ2

γ
{∥μq(γ)∥2 + tr(Σq(γ))} − 1

2(Ku + 1) log(Bq(σ2
u))

−1
2(Kv + 1) log(Bq(σ2

v)) − log (μq(1/σ2
u) +A−2u )

− log (μq(1/σ2
v) +A−2v ) + μq(1/σ2

u)μq(1/au) + μq(1/σ2
v)μq(1/av).

The optimal parameters shown in Algorithm 2 are all interdependent and are obtained by

cycling through this iterative coordinate ascent procedure. The algorithm also provides

fixed point iterative updates for μq(ω) and Σq(ω). Details on the derivation of these

parameters, as well as the parameters in (3.13) are given in Appendix 3.A. In addition,

μq(u) is defined to be the sub-vector of μq(ν) corresponding to u, and Σq(u) is the sub-

matrix of Σq(ν) corresponding to u. The parameters μq(v) and Σq(v) are defined similarly.

It is important to note that unlike ordinary MFVB, there is no guarantee that there will

be an increase at each iteration for p(y; q,μq(ω),Σq(ω)). Therefore, the cycle should end
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3.3. VARIATIONAL INFERENCE ALGORITHM

Set up initial values:

μq(ω) a (Kv + 2) × 1 vector, Σq(ω) a (Kv + 2) × (Kv + 2) positive definite matrix,
μq(1/σ2

u),μq(1/σ2
v) > 0, and μq(r2

ν) an n × 1 vector.

Cycle through:

ψq(ω) ← exp{−Cμq(ω) + 1
2diagonal (CΣq(ω)C⊺)}

Σq(ν) ← (C⊺diag{ψq(ω)}C + [ σ−2β I2 0

0 μq(1/σ2
u)IK

])−1

μq(ν) ←Σq(ν)C⊺diag{ψq(ω)}y
μq(r2

ν) ← diagonal{(y −Cνμq(ν)) (y −Cνμq(ν))⊺ +CνΣq(ν)C⊺ν}
Σq(ω) ← (C⊺diag{μq(r2

ν) ⊙ψq(ω)}C + [ σ−2γ I2 0

0 μq(1/σ2
v)IK

])−1

μq(ω) ← μq(ω) +Σq(ω) {C⊺ (μq(r2
ν) ⊙ψq(ω) − 1) − [ σ−2γ I2 0

0 μq(1/σ2
v)IK

]μq(ω)}
μq(1/au) ← 1/ (μq(1/σ2

u) +A2
u) ; μq(1/av) ← 1/ (μq(1/σ2

v) +A2
v)

μq(1/σ2
u) ← (Ku + 1) / {2μq(1/au) + ∥μq(u)∥2 + tr (Σq(u))}

μq(1/σ2
v) ← (Kv + 1) / {2μq(1/av) + ∥μq(v)∥2 + tr (Σq(v))}

until the absolute relative change in log p(y; q, μq(ω), Σq(ω)) is negligible.

Algorithm 2: MFVB algorithm for the determination of the optimal parameters in q∗(ω),
q∗(ν), q∗(σ2

u), q∗(σ2
v), q∗(au) and q∗(av).

68



3.4. ASSESSMENT OF PERFORMANCE

Setting f(x) log g(x)
A sin(3πx2) 0.1 + cos(4πx)
B −1.02x + 0.018x2 + 5φ (x; 0.38,0.08) −0.5 −Φ (x; 0.2,0.1) + 0.3x2

+8
3φ (x; 0.75,0.03)

C 35
8 φ (x; 0.01,0.08) + 190

23 φ (x; 0.45,0.23) 3
2φ (x; 0,0.2) + 4φ (x; 1,0.1)

+1.8{1 − 100
14 φ (x; 0.7,0.14)}

D sin(3πx2) − 1.02x + 0.018x2 cos (4πx) − 0.4 + 0.3x2

+5φ (x; 0.38,0.08) −Φ (x; 0.2,10)

Table 3.1: Details of simulation study settings.

once the absolute relative change in its logarithm falls below a negligible amount.

Algorithm 2 has been applied to simulated data and accuracy against MCMC has been

assessed. The results are summarized in Section 3.4.

3.4 Assessment of performance

In order to assess the performance of Algorithm 2, we carried out an extensive simulation

study to address the accuracy and computing time of model (3.2). Data were simulated

according to model (3.2) with n = 500 and the xis uniform on (0,1). The four mean and

variance function pairs that were used are listed in Table 3.1, where φ(⋅;μ,σ) and Φ(⋅;μ,σ)
denote the density and distribution functions of the Normal distribution with mean μ and

standard deviation σ, respectively. 100 data-sets were generated for each of the function

pairs shown in Table 3.1. Each model corresponding to a new replication was fitted using

MFVB corresponding to Algorithm 2 and MCMC based on a burnin of 5000, kept sample

of 5000 and thinning factor of 5. The MFVB iterations were terminated when the relative

change in log p(y; q) fell below 10−7.
In the sections that follow, we provide details on the accuracy, coverage and timing of

MFVB against the MCMC benchmark. Let us next discuss each of these assessments in

more detail.

3.4.1 Assessment of accuracy

Fast approximate inference for the model parameters is achieved by Algorithm 2, however

there is no guarantee that an acceptable level of accuracy will occur. Figure 3.2 provides
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3.4. ASSESSMENT OF PERFORMANCE

an accuracy assessment of Algorithm 2, where the accuracy scores are summarized by

boxplots for each parameter of interest. The accuracy score is defined in Section 1.9.

The parameters of interest for which accuracy is monitored are the f(Hk) and g(Hk),
1 ≤ k ≤ 5, where the Hk are the sample hexiles of the xis. It is evident from Figure 3.2

that most of the accuracies for the f(Hk) lie around 90%, while accuracies for the g(Hk)
lie around 80%. These favourable accuracy results are in keeping with the heuristics given

in Section 2.3.1 of Chapter 2.
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Figure 3.2: Summary of simulation study where the accuracy values are summarized using
boxplots.

The fitted mean and standard deviation functions for the first replication in each of the

four simulation settings is shown in Figure 3.3, with comparisons of MCMC and MFVB. As

illustrated, the MCMC and MFVB fits show very good agreement for the mean functions

and relatively good agreement for the standard deviation functions.

It is also of interest to see how well the joint distribution of certain parameters are

doing in terms of approximation accuracy. Figure 3.4 shows a visual assessment of the

approximation accuracy for the joint posterior density functions of the mean and variance

hexile pairs according to simulation setting A.
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Figure 3.3: Comparison of MCMC and MFVB fitted functions for the first data-set in
each of the four simulation settings.

In many cases, as shown by Figure 3.2, the accuracies can provide evidence of poor

MFVB performance. Figure 3.5 illustrates some of the poorer approximations for this

simulation study.
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Figure 3.4: Example of approximation accuracy for the joint posterior distributions of the
mean and variance hexiles given for the first dataset in simulation setting A.

3.4.2 Assessment of coverage

Another assessment of the performance of MFVB, involves the comparison between the

true coverage and the coverage gained by the MFVB approximate credible intervals. The

percentages of the true parameter coverage based on the approximate 95% credible inter-

vals attained from the MFVB posterior densities are given in Table 3.2. As can be seen,

the coverage overall is good and does not fall below 86%. Here we provide further confir-

mation that the performance of MFVB is excellent for the mean function and relatively
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Figure 3.5: Example of a poor approximation (for the variance function) for a dataset
corresponding to simulation setting C.

good for the variance function.

f(H1) f(H2) f(H3) f(H4) f(H5) g(H1) g(H2) g(H3) g(H4) g(H5)
sett. A 98 98 94 98 97 89 87 83 87 82

sett. B 98 98 95 96 95 83 83 90 89 83

sett. C 99 98 96 99 99 90 91 92 90 76

sett. D 98 98 95 98 98 89 89 83 86 82

Table 3.2: Percentage coverage of the true parameter values by approximate 95% cred-
ible intervals based on variational Bayes approximate posterior density functions. The
percentages are based on 100 replications.
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3.4.3 Assessment of speed

In order to demonstrate the time savings to be gained by using MFVB when compared

to MCMC, we monitored the time taken to fit each model for each approach. The study

was performed on a desktop computer (Intel Core i5-2400 3.10 GHz processor, 8 GBytes

of random access memory). The resulting times are summarized in Table 3.3.

As we discussed previously, convergence for both approaches was assessed differently.

Specifically, the MFVB iterations were terminated when the relative change in log p(y; q)
fell below 10−7, whilst MCMC was based on a kept sample of 1000. In addition, the speed

achieved by MFVB is traded off against slight accuracy losses which are invoked by the

product restriction given in (3.8).

However, even when allowing for these slight differences, the results clearly demonstrate

that MFVB is at least approximately 200 times faster than MCMC across the models.

Therefore, we conclude that a model which takes minutes to run using MCMC, will only

take seconds to run using our MFVB algorithm.

MCMC MFVB

setting A (1225.49, 1228.45) (1.69, 1.87)

setting B (1232.96, 1238.53) (4.95, 5.89)

setting C (1185.45, 1188.01) (3.29, 4.67)

setting D (1217.77, 1364.56) (1.26, 1.38)

Table 3.3: 99% Wilcoxon confidence intervals based on run times in seconds for MCMC
and MFVB fitting.

3.5 Application

We have seen the time benefits and good accuracy results for MFVB from the results

discussed thus far using simulated data. We next evaluate the performance of MFVB

using real data in order to understand its potential application.

Firstly, we consider two nonparametric regression examples without taking heteroscedas-

ticity into account. Secondly, we use our new MFVB methodology by applying Algorithm

2 to the same regression examples. This enables us to clearly understand the implications

of ignoring heteroscedasticity, as it might on occasion be tempting to immediately fit the

model in a näıve fashion. Our process involved fitting a cubic smoothing spline to two

nonparametric regression examples, based on the R function smooth.spline() (R Core
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Team, 2013) with default settings. Figure 3.6 illustrates the fits. For the interested reader,

a complete description of the two data sets that were used can be found in Sections 2.7

and 5.3 of Ruppert et al. (2003).

As can be evidenced from the standardized residual plots in Figure 3.6, there exists

significant heteroscedasticity. Ignoring the heteroscedastic nature of these data sets will

lead to erroneous inferential statements, such as prediction intervals. In order to account
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Figure 3.6: Two example nonparametric regression fits and corresponding standardized
residual plots. Horizontal dashed lines at ±2 and ±3 aid assessment of standard normality
of the standardized residuals.

for the significant heteroscedasticity as suggested by Figure 3.6, we also fitted (3.5) using

Algorithm 2 to both these data sets. This is shown in Figure 3.7. The top panels illustrate

the fitted mean functions with pointwise 95% credible sets. The middle panels illustrate

the fitted standard deviation functions, corresponding to
√
g in the notation of (3.2), and

corresponding 95% credible sets. The model was fitted using MFVB corresponding to

Algorithm 2 and MCMC based on BUGS (?) with a burnin of 5000, a kept sample of
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3.6. DISCUSSION

5000 and a thinning factor of 5. The MFVB iterations were terminated when the relative

change in log p(y; q) fell below 10−7. This value is determined by graphically checking if

convergence is achieved and can change depending on the type of application. We also

conducted a comprehensive check to confirm that the relative change in the approximate

marginal log-likelihood does not lead to early stopping. Data was generated from different

scenarios, over several hundred runs and Bayes estimates of f and g were recorded at the

stopping point and again with iterations continuing 25% beyond the stopping point. The

differences in the estimates were negligible.

The agreement between the MFVB and the MCMC fits for the mean function is

excellent. For the standard deviation function fit, the agreement between MFVB and

MCMC is good, rather than excellent. Finally, the
√
g-standardized residual plots in the

bottom panels of Figure 3.7, indicate proper accounting for the heteroscedasticity and

agreement with normality.

3.6 Discussion

At the outset of this chapter, we sought to develop a variational Bayesian algorithm for

semiparametric regression models that have a heteroscedastic component. We sought to

do this because ignoring heteroscedasticity, especially amongst complex statistical mod-

els, could lead to problematic inferential results and prediction intervals. As a result of

the work carried out in this chapter, we have successfully developed a variational Bayes

methodology which incorporates a new modification of MFVB, known as non-conjugate

variational message passing, involving a closed form algorithm for univariate heteroscedas-

tic semiparametric regression. The methodology also applies to larger more complex mod-

els, as provided for by the locality property of mean field variational inference methods.

Comparisons between variational inference and the MCMC benchmark for both simu-

lated and actual data, shows that this new methodology performs very well. In addition,

we have been able to achieve significant time savings by using our new methodology when

compared to MCMC. For instance, as was shown in Section 3.4.3, we witness at least a 200

fold increase in estimation speed. This is equivalent to saying that a model which takes

minutes to run using MCMC, will only take seconds to run using our MFVB methodology.

Having considered the impact of heteroscedasticity and remedies via our new MFVB-

type methodology, we next turn our attention to extensions of this work which we discuss
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Figure 3.7: Top panels: fitted mean functions for two example data sets from Wand &
Jones (1995) and Ruppert et al. (2003). The solid curves are approximate pointwise
posterior means whilst the dashed curves are corresponding pointwise 95% credible sets.
The approximate fits are based on MFVB via Algorithm 2 and MCMC via BUGS. Middle
panels: similar to top panels but for the standard deviation function. Bottom panels:
standardized residual plots based on {y − f̂(xi)}/√{ĝ(xi)} where f̂ and ĝ are the MFVB-
approximate Bayes estimates of f and g.

in Chapter 4.
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3.A. DERIVATION OF ALGORITHM 2

3.A Derivation of algorithm 2

Expressions for μq(ν) and Σq(ν)

First note that

p(ν ∣rest) ∝ p(y∣ν,ω)p(β)
= exp{−1

2(y −Cνν)⊺diag (e−Cωω) (y −Cνν)} × exp{− 1
2σ2

u
∥u∥2}

× exp{− 1
2σ2

β

∥β∥2} + const,

where ‘const’ denotes terms not depending on the argument of ν. Taking the logarithm

of both sides gives

log p(ν ∣rest) ∝ −1
2(y −Cνν)⊺diag (e−Cωω) (y −Cνν) − 1

2σ2
u
∥u∥2 − 1

2σ2
β

∥β∥2
∝ −1

2(y −Cνν)⊺diag (e−Cωω) (y −Cνν) − 1
2ν
⊺
⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 σ−2u bIKu

⎤⎥⎥⎥⎥⎦ν∝ −1
2
{ν⊺C⊺νdiag (e−Cωω)Cνν − 2C⊺νν⊺diag (e−Cωω)y

+ν⊺ ⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 σ−2u bIKu

⎤⎥⎥⎥⎥⎦ν
⎫⎪⎪⎬⎪⎪⎭

= −1
2

⎡⎢⎢⎢⎢⎣ν
⊺ ⎧⎪⎪⎨⎪⎪⎩C

⊺
νdiag (e−Cωω)Cν +

⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 σ−2u bIKu

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ν−2ν⊺ {C⊺νdiag (e−Cωω)y}] + const.

Now taking expectations with respect to all parameters except ν:

log q∗(ν) = −1
2

⎡⎢⎢⎢⎢⎣ν
⊺ ⎧⎪⎪⎨⎪⎪⎩C

⊺
νdiag (ψq(ω))Cν +

⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 μq(1/σ2
u)IKu

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ν−2ν⊺ {C⊺νdiag (ψq(ω))}] + const,

where

ψq(ω) = Eq {exp (−Cωω)}= exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)C⊺ω)} .

Completing the square gives

log q∗(ν) = −1
2
{ν −C⊺νdiag (ψq(ω))yΩ}⊺Ω{ν −C⊺νdiag (ψq(ω))yΩ}

where

Ω = ⎛⎝C⊺νdiag (ψq(ω))Cν +
⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 μq(1/σ2
u)IKu

⎤⎥⎥⎥⎥⎦
⎞
⎠
−1

.
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3.A. DERIVATION OF ALGORITHM 2

Therefore,

q∗(ν) is the N (μq(ν), Σq(ν)) density function,

where

μq(ν) =Σq(ν)CT
ν diag(ψq(ω))y,

and

Σq(ν) = ⎛⎝CT
ν diag{ψq(ω)}Cν +

⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 μq(1/σ2
u)IKu

⎤⎥⎥⎥⎥⎦
⎞
⎠
−1

.

Expressions for Bq(σ2
u) and μq(1/σ2

u)

p(σ2
u∣rest) ∝ p(u∣σ2

u)p(σ2
u∣au)

= ∣σ2
uIKu ∣−1/2 exp{− 1

2σ2
u
∥u∥2}(σ2

u)−12−1 exp{(1/au) /σ2
u} + const.

Taking the logarithm of both sides, we have

log p(σ2
u∣rest) = −1

2Ku log(σ2
u) − 1

2σ2
u
∥u∥2 − 3

2 log(σ2
u) − (1/au) /σ2

u + const.

= −{1
2 (Ku + 1) + 1} log(σ2

u) − (12∥u∥2 + a−1u ) /σ2
u + const.

Taking expectations, we get

log q∗(σ2
u) = Eq {log p(σ2

u∣rest)} + const.

= −{1
2(Ku + 1) + 1} log(σ2

u) − (12Eq∥u∥2 + μq(1/au)) /σ2
u + const

Noting that Eq∥u∥2 = ∥μq(u)∥2 + tr (Σq(u)), we have

log q∗(σ2
u) = −{1

2(Ku + 1) + 1} log(σ2
u) − (12 {∥μq(u)∥2 + tr (Σq(u))} + μq(1/au)) /σ2

u

+const
Therefore,

q∗(σ2
u) ∝ (σ2

u)−{12 (Ku+1)+1}
exp (− 1

σ2
u
[1
2
{∥μq(u)∥2 + tr (Σq(u))} + μq(1/au)])

which is of the form of an Inverse-Gamma distribution with parameters

Aq(σ2
u) = 1

2(Ku + 1), and

Bq(σ2
u) = 1

2
{∥μq(u)∥2 + tr (Σq(u))} + μq(1/au).
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In addition, using Result 1.4.3,

μq(1/σ2
u) = 1

2(Ku + 1)/Bq(σ2
u).

Expressions for Bq(σ2
v) and μq(1/σ2

v)

The derivation of Bq(σ2
v) and μq(1/σ2

v) is similar to that for q∗(σ2
u). The optimal q density

satisfies

q∗(σ2
v) ∝ (σ2

v)−{12 (Kv+1)+1}
exp (− 1

σ2
v
[1
2
{∥μq(v)∥2 + tr (Σq(v))} + μq(1/av)])

which is of the form of an Inverse-Gamma distribution with parameters

Aq(σ2
u) = 1

2(Kv + 1) and

Bq(σ2
v) = 1

2
{∥μq(v)∥2 + tr (Σq(v))} + μq(1/av).

Also,

μq(1/σ2
v) = 1

2(Kv + 1)/Bq(σ2
v).

Expressions for Bq(au) and μq(1/au)

p(au∣rest) ∝ p(σ2
u∣au)p(au)

= (1/au)1/2 exp{−(1/au) /σ2
u} (au)−12−1 exp{−(1/A2

u) /au} + const.

Taking the logarithm, we get

log p(au∣rest) = −2 log(au) − (σ−2u +A−2u )/au + const.

Taking expectations:

log q∗(au) = Eq {log p(au∣rest)} + const

= −2 log(au) −Eq (σ−2u +A−2u ) /au + const.

= −2 log(au) − (μq(1/σ2
u) +A−2u ) /au + const

Therefore,

q∗(au) ∝ (au)−2 exp{−(μq(1/σ2
u) +A−2u ) /au}
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which is of the form of an Inverse-Gamma distribution with parameters

Aq(au) = 1, and

Bq(au) = μq(1/σ2
u) +A−2u .

In addition, using Result 1.4.3,

μq(1/au) = 1/Bq(au).

Expressions for Bq(av), and μq(1/av)

The derivation of Bq(av), and μq(1/av) is equivalent to that for q∗(au). The optimal q

density satisfies

q∗(av) ∝ (av)−2 exp{−(μq(1/σ2
v) +A−2v ) /av}

which is of the form of an Inverse-Gamma distribution with parameters

Aq(av) = 1, and

Bq(av) = μq(1/σ2
v) +A−2v .

Also,

μq(av) = μq(1/av) = 1/Bq(av).

Derivation of the μq(ω) and Σq(ω) updates

The updates for μq(ω) and Σq(ω) are based on maximisation of the current value of the

marginal log-likelihood lower bound log p(y; q,μq(ω),Σq(ω)) over these parameters using

fixed point iteration. Wand (2014) shows that the updates reduce to

Σq(ω) ← {−2vec−1 ((Dvec(Σq(ω))S)T)}
−1

μq(ω) ← μq(ω) +Σq(ω) (Dμq(ω)S)T .

where

S ≡ Eq {log p(y∣ν,ω) + log p(ω∣σ2
v)} ,

D denotes derivative vector, as defined in Magnus & Neudecker (1999) and vec and vec−1
are as defined in Wand (2014). However, an equivalent expression for the first of these
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updates is

Σq(ω) ← (−Hμq(ω)S)−1 (3.14)

where H denotes the Hessian matrix as defined in Magnus & Neudecker (1999). We work

with this alternative form here. Proposition 3.A.1 gives justification for expression (3.14).

Full details of the proof of Proposition 3.A.1 are given in Appendix 3.C.

Proposition 3.A.1. Consider the d × 1 random vector x which follows the mul-

tivariate normal distribution and has density function of the form f(x;μ,Σ) ≡
∣Σ∣−12 exp{1

2(x −μ)⊺Σ−1(x −μ)}, then
1
2Hμf(x;μ,Σ) = vec−1 (Dvec(Σ)f(x;μ,Σ)) .

An explicit expression for S is

S ≡ −1TCωμq(ω) −μT
q(r2ν)exp{−Cωμq(ω) + 1

2diagonal (CωΣq(ω)CT
ω)}

−1
2tr

⎛⎜⎝
⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦(μq(ω)μT
q(ω) +Σq(ω))⎞⎟⎠

−(n + K
2 + 1) log (2π) − K

2 log (σ2
v) − log (σ2

γ) .
This leads to

dμq(ω)S = −1TCωdμq(ω)
+μT

q(r2ν)diag (exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)CT

ω)})Cωdμq(ω)

−μT
q(ω)

⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦dμq(ω)

= ([μq(r2ν) ⊙ exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)CT

ω)} − 1]T Cω

−μT
q(ω)

⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦
⎞⎟⎠dμq(ω).
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Then, by Theorem 6, Chapter 5, of Magnus & Neudecker (1999),

(Dμq(ω)S)T = CT
ω [μq(r2ν) ⊙ exp{−Cωμq(ω) + 1

2diagonal (CωΣq(ω)CT
ω)} − 1]

−⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦μq(ω).

Next,

d2μq(ω)S = (μq(r2ν) ⊙ exp [(dμq(ω))T {−Cωμq(ω) + 1
2diagonal (CωΣq(ω)CT

ω)}]T Cω

−(dμq(ω))T
⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦
⎞⎟⎠dμq(ω)

= [{μq(r2ν) ⊙ (diag [exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)CT

ω)}]
×(Cωdμq(ω)))}T Cω − (dμq(ω))T

⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦dμq(ω)

Then, using Result 1.4.11,

d2μq(ω)S = {(diag (μq(r2ν))diag [exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)CT

ω)}]
×(−Cωdμq(ω)))T Cω − (dμq(ω))T

⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
dμq(ω)

= (dμq(ω))T ( −CT
ωdiag[μq(r2ν) ⊙ exp{ −Cωμq(ω)

+1
2diagonal(CωΣq(ω)CT

ω)}])Cωdμq(ω)

−(dμq(ω))T
⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦dμq(ω)

Therefore, by Theorem 6, Chapter 6, of Magnus & Neudecker (1999),

−Hμq(ω)S = CT
ωdiag [μq(r2ν) ⊙ exp{Cωμq(ω) + 1

2diagonal (CωΣq(ω)CT
ω)}]Cω

+⎡⎢⎢⎢⎢⎣
σ−2γ I2 0

0 μq(1/σ2
v)I

⎤⎥⎥⎥⎥⎦ .
Combining these expressions leads to the updates in Algorithm 2.
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3.B Derivation for the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given in (3.14) is

log p(y; q,μq(ω),Σq(ω)) = 1
2 (Ku +Kv + 4) − n

2 log(2π) + log Γ (12(Ku + 1)) − 2 log(π)
+ log Γ (12(Kv + 1)) − log(Au) − log(Av) − 1

21
T (Cωμq(ω))

−1
21
⊺ {μq(r2ν) ⊙ exp (ψq(ω))} − log(σ2

β) − log(σ2
γ)

+1
2 log ∣Σq(ν)∣ + 1

2 log ∣Σq(ω)∣ − 1
2σ2

β

(∥μq(β)∥2 + tr(Σq(β)))
− 1
2σ2

γ
{∥μq(γ)∥2 + tr(Σq(γ))} − 1

2(Ku + 1) log(Bq(σ2
u))

−1
2(Kv + 1) log(Bq(σ2

v)) − log (μq(1/σ2
u) +A−2u )

− log (μq(1/σ2
v) +A−2v ) + μq(1/σ2

u)μq(1/au) + μq(1/σ2
v)μq(1/av).

The derivation of the logarithm lower bound on the marginal likelihood is due to

log p(y; q) = Eq {log p(y,β,u,γ,v, σ2
u, σ

2
v , au, av) − log q∗(β,u,γ,v, σ2

u, σ
2
v , au, av)}

= Eq {log p(y,ν,ω, σ2
u, σ

2
v , au, av) − log q∗(ν,ω, σ2

u, σ
2
v , au, av)} .

We can further factorise the true joint density since the distribution of y does not depend

on σ2
u, σ

2
v , au or av:

p(y,ν,ω, σ2
u, σ

2
v , au, av) = p(y∣ν,ω)p(ν,ω, σ2

u, σ
2
v , au, av).

Continuing in this fashion, we get

p(y,ν,ω, σ2
u, σ

2
v , au, av) = p(y∣ν,ω)p(ν ∣σ2

u)p(ω, σ2
u, σ

2
v , au, av)

= p(y∣ν,ω)p(ν ∣σ2
u)p(ω∣σ2

v)p(σ2
u, σ

2
v , au, av)

= p(y∣ν,ω)p(ν ∣σ2
u)p(ω∣σ2

v)p(σ2
u)p(σ2

v)p(au)p(av)
since the distribution of ν does not depend on ω, σ2

v , au or av, and the distribution of ω

does not depend on au or av. Also, σ
2
u, σ

2
v , au and av are independent.

The approximate joint density also factorises according to (3.10):

q(ν,ω, σ2
u, σ

2
v , au, av) = q(ν) q(ω) q(σ2

u) q(σ2
v) q(au) q(av).

Using the above factorisations, the new expression for the logarithm lower bound is
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now:

log p(y; q) = Eq {log p(y∣ν,ω)} +Eq {log p(ν ∣σ2
u) − q∗(ν)}

+Eq {log p(ω∣σ2
v) − log q∗(ω)} +Eq {log p(σ2

u∣au) − log q∗(σ2
u)}

+Eq {log p(σ2
v ∣av) − log q∗(σ2

v)} +Eq {log p(au) − log q∗(au)}
+Eq {log p(av) − log q∗(av)} .

The derivation of each component is given as follows.

Expression for Eq {log p(y∣ν,ω)}

Firstly,

p(y∣ν,ω) = (2π)−n/2 ∣diag{exp(Cωω)} ∣−1/2
exp{−1

2 (y −Cνν)⊺ diag{exp(−Cωω)}(y −Cνν)} .
Note that

∣diag{exp(Cωω)} ∣ =
⎡⎢⎢⎢⎢⎢⎢⎣
exp{(Cωω)1} . . . 0

⋮ ⋱ ⋮
0 . . . exp{(Cωω)n}

⎤⎥⎥⎥⎥⎥⎥⎦
= exp{(Cωω)1} × . . . × exp{(Cωω)n}
= exp{1⊺ (Cωω)}

and

−1
2 (y −Cνν)⊺ diag{exp(−Cωω)} (y −Cνν)
= −1

2 (Cνν)⊺ diag{exp (−Cωω)} (Cνν)
= −1

2r
⊺
νdiag{exp (−Cωω)} rν

= −1
21
⊺ {r2ν ⊙ exp (−Cωω)}

where

rν = Cνν, and

r2ν = diagonal{(Cνν) (Cνν)⊺} .
Therefore

log p(y∣ν,ω) = −n
2 log(2π) − 1

21
⊺ (Cωω) − 1

21
⊺ {r2ν ⊙ exp (−Cωω)} .

Taking expectations we get

Eq {log p(y∣ν,ω)} = −n
2 log(2π) − 1

21
⊺ (Cωμq(ω)) − 1

21
⊺ {μq(r2ν) ⊙ exp (ψq(ω))} ,
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where

μq(r2ν) = Eq [diagonal{(Cνν) (Cνν)⊺}]
= diagonal [Eq {(Cνν) (Cνν)⊺}]
= diagonal{(Cνμq(ν)) (Cνμq(ν))⊺ +CνΣq(ν)C⊺ν} .

Expression for Eq {log p(ν ∣σ2
u) − log q∗(ν)}

First note that

log p(ν ∣σ2
u) = − log(2π) − (k2 + 1) log(2π) − log(σ2

β) − k
2 log(σ2

u) − 1
2σ2

β

∥β∥2 − 1
2σ2

u
∥u∥2.

Taking expectations we get

Eq {log p(ν ∣σ2
u)} = − log(2π) − (k2 + 1) log(2π) − log(σ2

β) − k
2Eq {log(σ2

u)}− 1
2σ2

β

Eq (∥β∥2) − 1
2σ2

u
Eq (∥u∥2)

= − log(2π) − (k2 + 1) log(2π) − log(σ2
β) − k

2Eq {log(σ2
u)}− 1

2σ2
β

{∥μq(β)∥2 + tr (Σq(β))} − 1
2μq(1/σ2

u) {∥μq(u)∥2 + tr (Σq(u))} .
Also,

Eq {log q∗(ν)} = 1
2(Ku + 2) log(2π) + 1

2(Ku + 2) + 1
2 log ∣Σq(ν)∣.

Thus, we get

Eq {log p(ν ∣σ2
u) − log q∗(ν)} = − log(σ2

β) − 1
2KuEq (log(σ2

u)) + 1
2 log ∣Σq(ν)∣− 1

2σ2
β

{∥μq(β)∥2 + tr (Σq(β))} + 1
2(Ku + 2)

−1
2μq(1/σ2

u) {∥μq(u)∥2 + tr (Σq(u))} .
Expression for Eq {log p(ω∣σ2

v) − log q∗(ω)}

Similar to the previous derivation we get

Eq {log p(ω∣σ2
v) − log q∗(ω)} = − log(σ2

γ) − 1
2Kv Eq (log(σ2

v)) + 1
2 log ∣Σq(ω)∣− 1

2σ2
γ
{∥μq(γ)∥2 + tr (Σq(γ))} + 1

2(Kv + 2)
−1
2μq(1/σ2

v) {∥μq(v)∥2 + tr (Σq(v))} .
Expression for Eq {log p(σ2

u∣au) − log q∗(σ2
u)}
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Firstly,

log p(σ2
u∣au) − log q∗(σ2

u) = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 1
au
)
1
2

Γ(12)
(σ2

u)−12−1 exp(− 1
au

σ2
u
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

− log
⎧⎪⎪⎪⎨⎪⎪⎪⎩
B

q(σ2
u)

1
2 (Ku+1)

Γ(12 (Ku+1)) (σ2
u)−12 (Ku+1)−1 exp(−B

q(σ2
u)

σ2
u

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭= −1

2 log(au) + log Γ{1
2(Ku + 1)} − 1

2 log(π) + 1
2Ku log(σ2

u)+(1/σ2
u) (Bq(σ2

u) − a−1u ) − 1
2 (Ku + 1) log (Bq(σ2

u)) .
Taking expectations we get

Eq {log p(σ2
u∣au) − log q∗(σ2

u)} = −1
2Eq {log(au)} + log Γ{1

2(Ku + 1)} − 1
2 log(π)+μq(1/σ2

u) (Bq(σ2
u) − μq(1/au)) + 1

2KuEq {log(σ2
u)}−1

2 (Ku + 1) log (Bq(σ2
u)) .

Expression for Eq {log p(σ2
v ∣av) − log q∗(σ2

v)}

Similar to the previous derivation we get

Eq {log p(σ2
v ∣av) − log q∗(σ2

v)} = −1
2Eq {log(av)} + log Γ{1

2(Kv + 1)} − 1
2 log(π)+μq(1/σ2

v) (Bq(σ2
v) − μq(1/av)) + 1

2Kv Eq {log(σ2
v)}−1

2 (Kv + 1) log (Bq(σ2
v)) .

Expression Eq {log p(au) − log q∗(au)}

The difference of the logarithms are

log p(au) − log q∗(au) = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

A2
u

1
2

Γ(12 )
(au)−12−1 exp(− 1

A2
u

au
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭− log {Bq(au)

Γ(1) (au)−2 exp (−Bq(au)
au

)}
= − log(Au) − log Γ(12) + 1

2 log(au) + (1/au) (Bq(au) −A−2u )
− log(Bq(au)).

Then, substituting Bq(au) from Algorithm 2 gives

log p(au) − log q∗(au) = − log(Au) − 1
2 log(π) + 1

2 log(au) + μq(1/σ2
u)/au− log(μq(1/σ2

u) +A−2u ).
Taking expectations, we get

Eq {log p(au) − log q∗(au)} = − log(Au) − 1
2 log(π) + 1

2Eq {log(au)} + μq(1/σ2
u)μq(1/au)− log(μq(1/σ2

u) +A−2u ).
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Expression Eq {log p(av) − log q∗(av)}

Similar to the previous derivation we get

Eq {log p(av) − log q∗(av)} = − log(Av) − 1
2 log(π) + 1

2Eq {log(av)} + μq(1/σ2
v)μq(1/av)− log(μq(1/σ2

v) +A−2v ).
Adding all expressions together, we get the lower bound expression

log p(y; q,μq(ω),Σq(ω)) = 1
2 (Ku +Kv + 4) − n

2 log(2π) + log Γ (12(Ku + 1)) − 2 log(π)
+ log Γ (12(Kv + 1)) − log(Au) − log(Av) − 1

21
T (Cωμq(ω))

−1
21
⊺ {μq(r2ν) ⊙ exp (ψq(ω))} − log(σ2

β) − log(σ2
γ)

+1
2 log ∣Σq(ν)∣ + 1

2 log ∣Σq(ω)∣ − 1
2σ2

β

(∥μq(β)∥2 + tr(Σq(β)))
− 1
2σ2

γ
{∥μq(γ)∥2 + tr(Σq(γ))} − 1

2(Ku + 1) log(Bq(σ2
u))

−1
2(Kv + 1) log(Bq(σ2

v)) − log (μq(1/σ2
u) +A−2u )

− log (μq(1/σ2
v) +A−2v ) + μq(1/σ2

u)μq(1/au) + μq(1/σ2
v)μq(1/av).

Note the following cancellations:

−1
2μq(1/σ2

u) {∥μq(u)∥2 + tr (Σq(u))} + μq(1/σ2
u) (Bq(σ2

u) − μq(1/au)) ,
where

Bq(σ2
u) = 1

2
{∥μq(u)∥2 + tr (Σq(u))} + μq(1/au)

and

−1
2μq(1/σ2

v) {∥μq(v)∥2 + tr (Σq(v))} + μq(1/σ2
v) (Bq(σ2

v) − μq(1/av)) ,
where

Bq(σ2
v) = 1

2
{∥μq(v)∥2 + tr (Σq(v))} + μq(1/av).
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3.C Proof of Proposition 3.A.1

We begin by expanding the first differential with respect to vec (Σ) in the right-hand side

of Proposition 3.A.1:

dvec(Σ)f(x;μ,Σ) = (d∣Σ∣−12) exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}

+∣Σ∣−12d [exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}]

= −1
2 ∣Σ∣−32d∣Σ∣exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}
+∣Σ∣−12 (−1

2tr{(x −μ)(x −μ)⊺dΣ−1})
×exp{−1

2 (x −μ)⊺Σ−1 (x −μ)} .
Using Results 1.4.1 (b) and (c), we get

dvec(Σ)f(x;μ,Σ) = −1
2 ∣Σ∣−32 ∣Σ∣tr (Σ−1dΣ) exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}
−1
2 ∣Σ∣−12 tr{(x −μ) (x −μ)⊺ (−Σ−1(dΣ)Σ−1)}

×exp{−1
2 (x −μ)⊺Σ−1 (x −μ)} .

Next, using Results 1.4.13 and 1.4.1 (a), we see that

dvec(Σ)f(x;μ,Σ) = −1
2 ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}vec(Σ−1)dvec(Σ)
+1
2 ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}
×vec(Σ−1 (x −μ) (x −μ)⊺Σ−1)dvec(Σ).

Thus,

vec−1 (Dvec(Σ)f(x;μ,Σ)) = −1
2 ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}Σ−1
+1
2 ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}Σ−1
×(x −μ) (x −μ)⊺Σ−1

= −1
2 ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}
×Σ−1 {I − (x −μ)⊺Σ−1} .
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Now expanding the left-hand side of Proposition 3.A.1 we have

dμf(x;μ,Σ) = (d∣Σ∣−12) exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}

+∣Σ∣−12d [exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}]

= ∣Σ∣−12 [−1
2
{−(dμ)⊺Σ−1(x −μ) + (x −μ)⊺Σ−1(−dμ)}]

×exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}

= ∣Σ∣−12 exp{−1
2 (x −μ)⊺Σ−1 (x −μ)} (x −μ)⊺Σ−1dμ.

Next, we take the second differential with respect to μ:

d2μf(x;μ,Σ) = dμ [∣Σ∣−12 exp{−1
2 (x −μ)⊺Σ−1 (x −μ)} (x −μ)⊺Σ−1]dμ

= [dμ{∣Σ∣−12 (x −μ)⊺Σ−1} exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}

+∣Σ∣−12 (x −μ)⊺Σ−1dμ [exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}]]dμ

= [∣Σ∣−12 (−dμ)⊺Σ−1exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}

+∣Σ∣−12Σ−1 (x −μ) (x −μ)⊺Σ−1(dμ)⊺
×exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}]dμ
= (dμ)⊺[ − ∣Σ∣−12 exp{−1

2 (x −μ)⊺Σ−1 (x −μ)}Σ−1
×{I − (x −μ) (x −μ)⊺Σ−1}]dμ.

Therefore,

Hμf(x;μ,Σ) = −∣Σ∣−12 exp{−1
2 (x −μ)⊺Σ−1 (x −μ)}Σ−1 {I − (x −μ) (x −μ)⊺Σ−1} .

Proposition 3.A.1 follows immediately. This proposition was inspired by a result in the

appendix of Opper & Archambeau (2009).
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Chapter 4

Heteroscedastic semiparametric

regression extensions

4.1 Introduction

The 2010s has engendered an unprecedented explosion of data, spurring a need for faster

and increasingly flexible techniques to extrapolate and make sense of such data. The use of

semiparametric regression (e.g. Ruppert et al., 2003, 2009) provides a significant collection

of tractable statistical techniques, however more inline with datasets comprising moderate

sample sizes and batch processing. Of recent, Luts et al. (2013) developed algorithms

to perform semiparametric regression analysis in real time, where the data is processed

as it is collected and promptly made available through modern technologies. This new

nonparametric regression methodology is especially geared toward high volume/velocity

data. Part of this chapter extends their approach to adjust for possible heteroscedasticity.

Chapter 3 has shown that ignorance of significant heteroscedasticity is likely to lead to

inaccurate inferential statistics. A remedy for this is the employment of heteroscedastic

nonparametric regression. In this chapter we explore two other extensions to the univariate

nonparametric regression model. Here we instead focus on bivariate predictor nonpara-

metric regression and additive models. The modularity of our approach is utilised here

since the extension to bivariate and additive models has been relatively straightforward.

The content of this chapter is published as: Menictas, M and Wand. M.P. (2015). Variational
inference for heteroscedastic semiparametric regression. Australian and New Zealand Journal of Statistics,
57, Number 1, 119–138. This research was also presented at the Australian Statistical Conference in
conjunction with the Institute of Mathematical Statistics Annual Meeting, Sydney, 2014.
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Much like in Chapter 3 we take a Bayesian approach here as well by implementing a

non-conjugate MFVB strategy.

The following section describes the bivariate nonparametric regression extension method-

ology and illustrates this approach on simulated and real data. Accuracy scores and time

comparisons are also given. Section 4.3 describes the additive model extension and also

provides some illustrations on real data. Finally in Section 4.4 we extend the work of Luts

et al. (2013) to accommodate heteroscedasticity.

4.2 Bivariate predictor nonparametric regression

Bivariate nonparametric regression is of particular interest to a number of disciplines,

such as geology, oceanography, public health and mining. This diverse area of statistics

deals with tractable smoothing of point clouds where we would be interested in the mean

response as a bivariate function of, for instance, the longitude and latitude of a certain

geographical location. Bivariate smoothing and geostatistics have many similarities, for

instance, geostatistics is concerned with converting geographically referenced observations

to increasingly more legible maps (e.g. Cressie, 1993) and hence deals with a bivariate

predictor component.

As seen in previous chapters, the use of penalized spline smoothing requires a set of

basis functions that enables the possibility of nonlinear structure. Bivariate smoothing on

the other hand requires bivariate basis functions. This extension can be treated in at least

two specific ways: (i) tensor product bases and (ii) radial basis functions. More detail of

these approaches is given in Ruppert et al. (2003). A possible difficulty of tensor product

bases is their dependence on the position of the coordinate axes, causing the results to

change if the geographical locations were measured on axes with different positions. On

the other hand, radial basis functions are invariant to rotation of the axes. In nongeo-

graphical applications rotational invariance is not an obstacle, but for geographical data

it is important to know that the answers are not affected by axis position. Hence, for this

extension we use radial basis functions for bivariate smoothing, in particular the low-rank

thin plate spline bases.
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4.2.1 Model description

Algorithm 2 is relatively easy to extend to its bivariate extension. The data are of the

form

(xi, yi), xi ∈ R2, yi ∈ R. (4.1)

In classical geostatistics applications the xis represent geographical locations, such as lati-

tude and longitude. However, in (4.1) the xis could also represent pairs of non-geographical

measurements. The bivariate version of (3.2) is

yi
ind.∼ N(f(xi), g(xi)), 1 ≤ i ≤ n, (4.2)

where f and g are real-valued smooth functions on R
2. The bivariate analogue of (3.3) is

f(x) = β0 +β⊺1x + Ku∑
k=1

uk z
u
k (x), uk

ind.∼ N(0, σ2
u)

and g(x) = exp
⎛
⎝γ0 + γ⊺1x + Kv∑

k=1
vk z

v
k(x)⎞⎠, vk

ind.∼ N(0, σ2
v),

(4.3)

where β1 and γ1 are each 2 × 1 vectors of fixed effects. The functions {zuk ∶ 1 ≤ k ≤ Ku}
and {zvk ∶ 1 ≤ k ≤Kv} now represent bivariate spline basis functions. A reasonable default

for the zuk (Ruppert et al., 2003) is the low-rank thin plate spline basis with kth element:

zuk (x) = r(∥x −κu
k∥) [ r(∥κu

k −κu
k′∥)

1≤k,k′≤Ku

]−1/2, (4.4)

where κu
1 , . . . ,κ

u
Ku

is a set of bivariate knot locations that efficiently cover the space of the

xis and r(x) ≡ x2 log(x). The default zvks have an analogous definition.

Comparing this set-up to the univariate nonparametric heteroscedastic regression model,

treated in Chapter 3, the only differences are the basis functions and their coefficients.

Hence, Algorithm 2 can be used to fit the bivariate nonparametric heteroscedastic regres-

sion model by replacing ν, ω, Cν and Cω from Section 3.2 with

ν ≡
⎡⎢⎢⎢⎢⎢⎢⎣

β0

β1

u

⎤⎥⎥⎥⎥⎥⎥⎦
, ω ≡

⎡⎢⎢⎢⎢⎢⎢⎣
γ0

γ1

v

⎤⎥⎥⎥⎥⎥⎥⎦
, Cν ≡ [1 xT

i zuk (xi)
1≤k≤Ku

]
1≤i≤n and Cω ≡ [1 xT

i zvk(xi)
1≤k≤Kv

]
1≤i≤n.

We have carried out extensive assessment of the bivariate version of Algorithm 2 to assess

accuracy and computing time of model (4.2). Sections 4.2.2 and 4.2.3 give the details of

a simulation study and real data example.

93



4.2. BIVARIATE PREDICTOR NONPARAMETRIC REGRESSION

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
y

Figure 4.1: Left panel: Contour plot illustrating the simulation setting given by (4.5).
Right panel: Heat plot corresponding to (4.5).

4.2.2 Simulation study

We consider the following true mean and log variance functions for our simulation setting.

This is illustrated in Figure 4.1.

f(x1, x2) = 0.199 + 12.924

⎧⎪⎪⎨⎪⎪⎩φ
⎛
⎝
⎡⎢⎢⎢⎢⎣
x1

x2

⎤⎥⎥⎥⎥⎦ ;
⎡⎢⎢⎢⎢⎣
0.2

0.5

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
0.360 0.252

0.252 0.360

⎤⎥⎥⎥⎥⎦
⎞
⎠

+φ⎛
⎝
⎡⎢⎢⎢⎢⎣
x1

x2

⎤⎥⎥⎥⎥⎦ ;
⎡⎢⎢⎢⎢⎣
0.375

0.5

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
0.360 0.252

0.252 0.360

⎤⎥⎥⎥⎥⎦
⎞
⎠

+φ⎛
⎝
⎡⎢⎢⎢⎢⎣
x1

x2

⎤⎥⎥⎥⎥⎦ ;
⎡⎢⎢⎢⎢⎣
0.5

0.5

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣

0.360 −0.252
−0.252 0.360

⎤⎥⎥⎥⎥⎦
⎞
⎠
⎫⎪⎪⎬⎪⎪⎭ ,

log g(x1, x2) = −5.470 + 0.873 cos (0.3π(x1 + x2)) .

(4.5)

From this setting we generated 1000 datasets of size n = 200. Each model correspond-

ing to a new replication was fitted using MFVB corresponding to the bivariate version

of Algorithm 2 and MCMC based on a burnin of 5000, kept sample of 5000 and thin-

ning factor of 5. The MFVB iterations were terminated when the relative change in

log p(y; q, μq(ω), Σq(ω)) fell below 10−7.
Figure 4.2 illustrates an accuracy assessment where the accuracy scores for each pa-

rameter of interest are summarized as a boxplot. The parameters on the horizontal axis

of Figure 4.2 are the estimated approximate posterior density functions for f and g, eval-

uated at the sample quartiles of x1 and x2. We use Q1,Q2 and Q3 to denote these sample
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Figure 4.2: Boxplot representation of accuracy values for MFVB against an MCMC bench-
mark, where the boxplots correspond to the mean function hexiles and variance function
hexiles.

quartiles. It is pleasing to see that most of the accuracy values for the bivariate mean

function lie above 90% and above 70% for the bivariate variance function. Figure 4.3

shows visual assessment of the approximate posterior density functions as given by using

MFVB in comparison with the MCMC benchmark for a single replication in the simula-

tion study. MFVB accuracy is seen to be excellent for the mean function hexiles and quite

good for the variance function hexiles.

The percentages of the true parameter coverage based on the approximate 95% credible

sets attained from the MFVB posterior densities are given in Table 4.1. All of the mean

function coverage values are showing excellent coverage of the truth, except for f(Q2,Q2)
and this may be due to the lack of data surrounding this region in our simulated data-

sets. Also, the variance function coverage values are doing well in terms of covering the

truth and this is consistent with the accuracy scores achieved by MFVB. An assessment

of the speed of the competing approaches has also been carried out. The run time of

each replication was monitored for both MCMC and MFVB. These times are summarized

in Table 4.2. This study was performed on a laptop computer (Intel Core i7 2.8GHz

processor, 16 GBytes of random access memory). These results show that on average
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Figure 4.3: Approximate posterior density functions obtained via MFVB and MCMC for a
single replication of the simulation study. The pairs of density functions shown correspond
to the mean and variance functions hexiles. The accuracy scores as defined in Section 1.9
are also displayed.
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f(Q1,Q1) f(Q2,Q2) f(Q3,Q3) f(f(Q1,Q3) f(Q3,Q1)
94 68 92 90 91

g(Q1,Q1)) g(Q2,Q2) g(Q3,Q3) g(Q1,Q3) g(Q3,Q1)
88 79 86 85 86

Table 4.1: Percentage coverage of the true parameter values by approximate 95% cred-
ible intervals based on variational Bayes approximate posterior density functions. The
percentages are based on 1000 replications.

MCMC MFVB

(533.68, 534.18) (4.05, 4.52)

Table 4.2: 99% Wilcoxon confidence intervals based on run times in seconds for MCMC
and MFVB fitting.

MFVB is at least 100 times faster than our MCMC benchmark.

4.2.3 Application

We fitted (4.3) to geo-referenced data on sea-floor sediment pollution in the North Sea

(source: Pebesma & Duin, 2005). The data are stored in the pcb data-frame within the

R package gstat (Pebesma, 2004). The response variable is a measurement of polychlori-

nated biphenyl with Ballschmiter-Zell congener number 138 (PCB-138). The motivating

study is concerned with spatial and temporal variability of PCB-138. For the purposes

of illustration, we ignore the temporal aspect and focus on geographical variability in the

mean and variance of the response. In the notation of model (4.2)–(4.3), the variables are

x = (x1, x2) where

x1 = x-coordinate in the Universal Mobile Telecommunications System for Zone 31,

x2 = y-coordinate in the Universal Mobile Telecommunications System for Zone 31, and

y = PCB-138 measured on the sediment fraction smaller than 63 parts per million,

in μg/kg dry matter.

The sample size is n = 216 and Ku = Kv = 50 thin plate spline bases were used for each

functional fit. The estimated mean and standard deviation functions are shown in Figure

4.4. Both functions are seen to exhibit pronounced spatial effects. Simple geostatistical
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Figure 4.4: Left panel: Fitted mean function for the polychlorinated biphenyl data described
in the text, based on MFVB via Algorithm 2. Right panel: similar to top panel but for the
standard deviation function.

models that ignore the heteroscedasticity described by the right panel of Figure 4.4 would

have erroneous prediction intervals.

Figure 4.5 gives a visual assessment of the convergence of the bivariate analogue of

Algorithm 2 as it monitors successive values of log p(y; q,μq(ω),Σq(ω)). It is evident that
after approximately 75 iterations the Algorithm has reached convergence, after which

inference was made to achieve Figure 4.4.

Higher dimensional heteroscedastic nonparametric regression can be achieved via Al-

gorithm 2 with little notational change from the bivariate case treated here. The only

required modification involves higher-dimensional thin plate spline basis functions instead

of those given by (4.4).

4.3 Extension to additive models

The previous section showed how to construct tractable regression models for a bivariate

set of continuous predictors modelled as a smooth function. However in many regression

settings involving several continuous predictors, incorporation of multiple smooth func-

tions may be more suited. The assumption made here is that of additivity, hence they

are referred to as additive models (Ezekiel, 1924; Friedman & Stuetzle, 1981). Further-

more, we are dealing with models that need to accommodate heteroscedasticity, thus we
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Figure 4.5: Successive values of log p(y; q,μq(ω),Σq(ω)) for monitoring the convergence of
non-conjugate MFVB given by the bivariate analogue of Algorithm 2.

incorporate the variance as a multiplicative function. Models of this type have a small

literature with Rigby & Stasinopoulos (2005) being a key reference. Their generic form is

yi ∼ N(β0 + d∑
j=1

fj(xji), exp(γ0 + d∑
j=1

hj(xji))), 1 ≤ i ≤ n. (4.6)

Here fj and hj , 1 ≤ j ≤ d, are smooth but otherwise arbitrary functions. Penalised splines

are easily extended to handle (4.6). Here we use penalized spline models of the form

fj(x) = βj x +
Ku

j∑
k=1

ujk z
u
jk(x), ujk ind.∼ N(0, σ2

uj)
and hj(x) = γj x +

Kv
j∑

k=1
vjk z

v
jk(x), vjk

ind.∼ N(0, σ2
vj)

(4.7)

where the {zujk ∶ 1 ≤ k ≤ Ku
j }, 1 ≤ j ≤ d, are spline basis functions of sizes Ku

j , analogue to

those presented in Section 3.2. In addition the {zvjk ∶ 1 ≤ k ≤ Kv
j }, 1 ≤ j ≤ d, are similarly

defined. The priors on the regression coefficients and standard deviation parameters are

βj
ind.∼ N(0, σ2

β), γj
ind.∼ N(0, σ2

γ),
σuj

ind.∼ Half-Cauchy(Au), σvj
ind.∼ Half-Cauchy(Av), 1 ≤ j ≤ d.

(4.8)
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The complete Bayesian hierarchical model corresponding to (4.6) is:

y∣β,γ,u,v ∼ N (Xβ +Zuu, diag{exp (Xγ +Zvv)}) ,
u∣σ2

u ∼ N(0, blockdiag
1≤j≤d (σ2

uj
IKuj

)) , v∣σ2
v ∼ N(0, blockdiag

1≤j≤d (σ2
vj
IKvj

)) ,
σ2
uj
∣auj ∼ Inverse-Gamma(12 ,1/auj), auj ∼ Inverse-Gamma(12 ,1/A2

uj
),

σ2
vj
∣avj ∼ Inverse-Gamma(12 ,1/avj), avj ∼ Inverse-Gamma(12 ,1/A2

vj
),

1 ≤ j ≤ d, β ∼ N (0, σ2
βId+1) , γ ∼ N (0, σ2

γId+1) .

(4.9)

The differences of this model and that of Section 3.2 are that the design matrices are now

X ≡ [1 x1i x2i ⋯ xdi]1≤i≤n,
Zu ≡ [ [ zu1

k (x1i)
1≤k≤Ku1

]
1≤i≤n [ zu2

k (x2i)
1≤k≤Ku2

]
1≤i≤n ⋯ [ zud

k (xdi)
1≤k≤Kud

]
1≤i≤n ] ,

Zv ≡ [ [ zv1

k (x1i)
1≤k≤Kv1

]
1≤i≤n [ zv2

k (x2i)
1≤k≤Kv2

]
1≤i≤n ⋯ [ zvd

k (xdi)
1≤k≤Kvd

]
1≤i≤n ]

(4.10)

The coefficient vectors are

β =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1⋮
βd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0

γ1⋮
γd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎣
u1⋮
ud

⎤⎥⎥⎥⎥⎥⎥⎦
, and v =

⎡⎢⎢⎢⎢⎢⎢⎣
v1⋮
vd

⎤⎥⎥⎥⎥⎥⎥⎦
, (4.11)

where uj is the Kuj × 1 vector containing the ujk. It is again convenient to combine the

mean function coefficients and variance function coefficients into single vectors as shown

in (3.6). The Bayesian model given by (4.9) admits a closed form non-conjugate MFVB

algorithm, with the regression coefficients for the full mean and variance functions each

being Multivariate Normal. Algorithm 3 gives the details of these closed form updates.

Convergence of Algorithm 3 is assessed using the lower-bound of the marginal log-

likelihood:

log p(y; q,μq(ω),Σq(ω)) = 1
2
{∑d

	=1 (Ku�
+Kv�) + 4} − n

2 log(2π) + log Γ (12(Ku + 1))
−2 log(π) + log Γ (12 (∑d

	=1Kv� + d − 1)) −∑d
	=1 log(Au�

)
−∑d

	=1 log(Av�) − 1
21

T (Cωμq(ω)) − 1
21
⊺ {μq(r2ν) ⊙ exp (ψq(ω))}

−1
2(d + 1) log(σ2

β) − 1
2(d + 1) log(σ2

γ) + 1
2 log ∣Σq(ν)∣

+1
2 log ∣Σq(ω)∣ − 1

2σ2
β

(∥μq(β)∥2 + tr(Σq(β)))
− 1
2σ2

γ
{∥μq(γ)∥2 + tr(Σq(γ))} − 1

2(∑d
	=1Ku�

+ 1) log(Bq(σ2
u�
))

−1
2(∑d

	=1Kv� + 1) log(Bq(σ2
v�
)) − log (μq(1/σ2

u�
) +A−2u�

)
− log (μq(1/σ2

v�
) +A−2v� ) + μq(1/σ2

u�
)μq(1/au�) + μq(1/σ2

v�
)μq(1/av�).
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Set up initial values:

μq(ω) a (∑d
j Kvj + d + 1)×1 vector,Σq(ω) a (∑d

j Kvj + d + 1)×(∑d
j Kvj + d + 1) positive

definite matrix, μ
q(1/σ2

uj
), μq(1/σ2

vj
) > 0, and μq(r2

ν) an n × 1 vector.

Cycle through:

ψq(ω) ← exp{−Cωμq(ω) + 1
2diagonal (CωΣq(ω)C⊺ω)}

Σq(ν) ←
⎛⎜⎜⎝C

⊺
νdiag{ψq(ω)}Cν +

⎡⎢⎢⎢⎢⎢⎢⎣
σ−2β I3 0

0 blockdiag
1≤j≤d (μ

q(1/σ2
uj
)IuKj

)
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠
−1

μq(ν) ←Σq(ν)C⊺νdiag{ψq(ω)}y

Σq(ω) ←
⎛⎜⎜⎝C

⊺
ωdiag{μq(r2

ν) ⊙ψq(ω)}Cω +
⎡⎢⎢⎢⎢⎢⎢⎣
σ−2γ I3 0

0 blockdiag
1≤j≤d (μ

q(1/σ2
vj
)IvKj

)
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠
−1

μq(ω) ← μq(ω) +Σq(ω)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C⊺ω (μq(r2

ν) ⊙ψq(ω) − 1)

−
⎡⎢⎢⎢⎢⎢⎢⎣
σ−2γ I3 0

0 blockdiag
1≤j≤d (μ

q(1/σ2
vj
)IvKj

)
⎤⎥⎥⎥⎥⎥⎥⎦
μq(ω)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
For j = 1, . . . , d:

μ
q(1/auj ) ← 1/(μ

q(1/σ2
uj
) +A2

uj
) ; μ

q(1/avj ) ← 1/(μ
q(1/σ2

vj
) +A2

vj)
μ
q(1/σ2

uj
) ← Kuj+1

2μ
q(1/auj )

+∥μ
q(uj)∥2+tr(Σq(uj))

μ
q(1/σ2

vj
) ← Kvj+1

2μ
q(1/avj )

+∥μ
q(vj)∥2+tr(Σq(vj))

until the absolute relative change in log p(y; q, μq(ω), Σq(ω)) is negligible.

Algorithm 3: MFVB algorithm for the determination of the optimal parameters in q∗(ω),
q∗(ν), q∗(σ2

uj), q∗(σ2
vj), q∗(auj) and q∗(avj), 1 ≤ j ≤ d.
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The derivations of the optimal parameters in Algorithm 3 and the calculations correspond-

ing to the lower-bound of the marginal log-likelihood are similar to that described in the

Appendix 3.A and 3.B.

4.3.1 Application

Algorithm 3 has been applied to a data set from the Californian air pollution study

described in Breiman & Friedman (1985). The data set consists of 345 observations on

the four variables xi1, xi2, xi3, yi, 1 ≤ i ≤ 345. The predictors are defined as

x1 = pressure gradient (mm Hg) from Los Angeles International Airport to Daggett,

California,

x2 = inversion base height (feet)

x3 = inversion base temperature (degrees Fahrenheit),

and the response variable is

y = ozone concentration (ppm) at Sandburg Air Force Base.

Our model is

yi
ind.∼ N (β0 + f1(x1i) + f2(x2i) + f3(x3i),

exp{γ0 + h1(x1i) + h2(x2i) + h3(x3i)}) . (4.12)

The data was standardised and the hyperparameters were set to have values σβ = σγ = Au =
Av = 105, to achieve non-informativity. After fitting, the resulting values were transformed

to their original units. In addition the spline basis function sizes for modelling f1, f2

and f3 where 18 each. The same values were used for modelling h1, h2 and h3. The

approximation of the mean function and standard deviation function is shown in Figure

4.6. Inference based on MCMC was carried out using the same convergence criteria as

explained in Section 4.2.2.

The estimated mean function f1 has been vertically aligned to correspond to the re-

sponse data by plotting, for x1, the response with each of x2 and x3 set at their average.

In other words, we have evaluated the estimate of f2 at x̄2 and estimate of f3 at x̄3 in

order to vertically align the estimated f1 curve. Similar alignments have been used for f2,

f3, exp (h1/2), exp (h2/2), and exp (h3/2).
As is seen from Figure 4.6 MFVB and MCMC are showing excellent agreement in
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Figure 4.6: Top panels: approximation to the posterior mean functions f1, f2, and f3 and
their 95% credible sets. Bottom panels: approximation to the posterior standard deviation
functions exp (h1/2), exp (h2/2), and exp (h3/2) and their 95% credible sets.
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their fits. The MFVB approach was markedly faster for this example. Even though the

existence of heteroscedasticity in inversion base height and Dagget pressure gradient is

somewhat low, there is noticeable heteroscedasticity in inversion base temperature which

has been captured by model (4.12).

4.4 Real-time heteroscedastic nonparametric regression

The constant expansion of technological advancements in the 2010s so far has generated

larger volumes of data than ever before. Not only is this information growing bigger but

also increasing with higher speed.

Almost all nonparametric regression methodology presented to date make the assump-

tion that the data are processed in batch, that is, at the same time. However, some

disadvantages of batch processing include the requirement that analysis must wait until

the entire data set has been collected. In the real-time case, the analysis updates once

each new data point is collected. This is beneficial, and sometimes essential, for both

high volume and/or velocity data. Many procedures used in single predictor nonpara-

metric regression analysis use fully automated batch procedures however do not yet have

an online/real-time modification. Recently, Luts et al. (2013) developed MFVB-based

algorithms for performing semiparametric regression analysis in real time.

Algorithms that deal with the arrival of a stream of data points or just one data point

per iteration have recently been developed for variational Bayesian inference by the ma-

chine learning community (e.g. Hoffman et al., 2010; Wang et al., 2011). This methodology

has become known as online mean field variational Bayes or online variational Bayes for

short. While most procedures to date involve storing a small amount of data in memory,

they still need knowledge of the amount of data points from the beginning of the algo-

rithm. In contrast, Luts et al. (2013) develop an online algorithm that uses past data

only in the form of sufficient statistics and is relevant to fitting mixed models. We ex-

tend their approach by developing a variation of Algorithm 2 that allows for real-time

heteroscedastic nonparametric regression. Unlike Luts et al. (2013) however, our real time

MFVB algorithm is hindered by the fact that it requires storage of the entire data set.

An extension to our algorithm, that only uses storage of the sufficient statistics would be

worthwhile for future investigation.

The dependence on the data in Algorithm 2 is evident only in the response vector y
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and the design matrices Cν and Cω. These quantities are simple to update when a new

observation ynew and its corresponding {(2 +Ku) × 1} and {(2 +Kv) × 1} vectors of design

components cν,new and cω,new arrives. For instance, the new Cν matrix is

Cν ← [C⊺ν cν,new]⊺ .
The corresponding updates for ynew and Cω are given in Algorithm 4. The starting values

1. Use Algorithm 2 to perform batch-based tuning runs, analogous to those described
in Algorithm 2’ of Luts et al. (2014), and determine a warm-up sample size nwarm
for which convergence is validated.

2. Set μq(ν), Σq(ν), μq(ω), Σq(ω), μq(1/σ2
u), and μq(1/σ2

v) to their values obtained in the
warm up batch-based tuning run with sample size nwarm. Next set ywarm to be the
response vector on the first nwarm observations. Also set Cν,warm and Cω,warm to be
the design matrices based on the first nwarm observations. Lastly assign n← nwarm.

3. Cycle:

Read in ynew (1×1), cν,new {(2 +Ku) × 1} and cω,new {(2 +Kv) × 1}; n← n+1
Cν ← [C⊺ν cν,new]⊺ ; Cω ← [C⊺ω cω,new]⊺ ; y ← [y⊺ ynew]⊺
μq(r2ν) ← diagonal{(y −Cνμq(ν)) (y −Cνμq(ν))⊺ +CνΣq(ν)C⊺ν}
ψq(ω) ← exp{−Cωμq(ω) + 1

2diagonal (CωΣq(ω)C⊺ω)}
Σq(ν) ← ⎛

⎝C⊺νdiag (ψq(ω))Cν +
⎡⎢⎢⎢⎢⎣
σ−2β I2 0

0 μq(1/σ2
u)IKu

⎤⎥⎥⎥⎥⎦
⎞
⎠
−1

μq(ν) ←Σq(ν)C⊺νdiag (ψq(ω))y
Σq(ω) ← (C⊺ωdiag (μq(r2

ν) ⊙ψq(ω))Cω + [ σ−2γ I2 0

0 μq(1/σ2
v)IKv

])−1

μq(ω) ← μq(ω) +Σq(ω) {C⊺ω (μq(r2
ν) ⊙ψq(ω) − 1) − [ σ−2γ I2 0

0 μq(1/σ2
v)IKv

]μq(ω)}
μq(1/au) ← 1/ (μq(1/σ2

u) +A−2u ) ; μq(1/av) ← 1/ (μq(1/σ2
v) +A−2v )

μq(1/σ2
u) ← (Ku + 1)/{2μq(1/au)+ ∥ μq(u) ∥2 +tr (Σq(u))}

μq(1/σ2
v) ← (Kv + 1)/{2μq(1/av)+ ∥ μq(v) ∥2 +tr (Σq(v))}

until the analysis is complete or data are no longer available.

Algorithm 4: MFVB algorithm for real-time determination of the optimal parameters in
q∗(ω), q∗(ν), q∗(σ2

u), q∗(σ2
v), q∗(au) and q∗(av).

for the real-time procedure are determined by performing a sufficiently large batch fit.
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When implementing Algorithm 4, the approximate posterior density functions of the

model parameters are updated continually as each new data point arrives.

The web-site realtime-semiparametric-regression.net features a movie that il-

lustrates Algorithm 4 for data simulated according to setting D from Table 3.1. The

warm-up sample size is nwarm = 500. The link for the movie is titled Heteroscedastic

nonparametric regression and portrays the effectiveness of real time processing for

mean and standard deviation function fitting. Figure 4.7 illustrates the mean and vari-

ance function fits for the first online data point at n = 501 and again at the last online

data point where n = 5000. As each new data point is processed, the mean and variance

function fits improve as seen from this comparison.

4.5 Discussion

This chapter extends the work in Chapter 3 as we consider a wider class of models for fitting

and inference using non-conjugate MFVB. We have developed closed form algorithms for

both fast batch and real-time fitting and inference for a range of semiparametric regression

models that have a heteroscedastic component. The methodology developed here applies

to increasingly complex models as a result of the locality property of MFVB inference

methods in general. In both the simulated and actual data settings, the new methodology

is seen to perform very well.
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(a) Resulting mean and standard deviation function fits after first new data point arrives.
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(b) Resulting mean and standard deviation function fits once all 5000 data points have arrived.

Figure 4.7: Real-time approximate non-conjugate MFVB regression fits for the simulated
data according to setting D from Table 3.1.
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Chapter 5

Mean field variational Bayes for

group-specific curve models

5.1 Introduction

In this chapter we develop MFVB algorithms catered to fitting large data sets that exhibit

multilevel and longitudinal structures. In addition to developing the general MFVB algo-

rithms that we have so far seen in the previous chapters of this thesis, here we also look

into streamlining these algorithms in terms of storage and number of operations needed.

Streamlining of such algorithms is essential when using MFVB for fitting and inference in

multilevel and longitudinal models. This is often the case since a näıve implementation

would result in cubic dependence on the number of groups within a level of the model

being considered.

Lee & Wand (2015) develop streamlined algorithms for treatment of two-level models

with Gaussian and binary responses and show that the number of operations required

are linear in the number of groups in each level. This allows for much faster and highly

accurate Bayesian inference for large longitudinal and multilevel models. We adopt the

methodology used in Lee & Wand (2015) to streamline the two-level MFVB algorithm

used in Section 5.2.3 and also extend their methodology to cater to the three-level model

considered in Section 5.3.2. These algorithms have some inferential inaccuracy, however, as

represented by the diagnostic illustrations in this chapter, these inaccuracies are relatively

insignificant when compared to the computational time and storage savings afforded by

the streamlined MFVB algorithm. The software package Infer.NET allows treatment of
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such models, however, its non-streamlined implementation makes MFVB very slow when

the number of groups is large.

Multilevel and longitudinal models, e.g. Diggle et al. (2002), Fitzmaurice et al. (2012),

Gelman & Hill (2006) and Goldstein (2011), is a prominent area in Statistics, however the

union of these areas and that of variational methods has not yet appeared to be eminent.

Recent contributions are found in Ormerod & Wand (2010) and Luts et al. (2014), which

use MFVB for longitudinal/multilevel data but invert the effects covariance matrix pa-

rameter updates in a näıve fashion. The main idea of this chapter is to produce MFVB

algorithms for multilevel/longitudinal data based on the näıve inversion of the effects co-

variance matrix and compare this to the algorithms using the streamlined inversion of the

effects covariance matrix. We restrict attention to the two-level and three-level Gaussian

response models.

The motivation for using a streamlined MFVB algorithm in this chapter comes from

a three-level longitudinal data set that represents frequency dependent backscatter coef-

ficients for induced tumors in rodents (Simpson, 2013). The structure of this data led to

the consideration of a variant of the general MFVB approach, referred to as streamlined

MFVB, which we explore in further detail in this chapter.

Section 5.2 gives description of the two-level Gaussian response model in terms of its

construction and corresponding MFVB methodology and Section 5.3 provides similar de-

scriptions for the three-level Gaussian response model. Comprehensive simulation studies

and real data examples are considered for both the two-level and three-level Gaussian

response models. Appendix 5.A and 5.B provide the derivations for the näıve two-level

model Algorithm and its corresponding lower bound on the marginal log-likelihood.

5.2 Two-level Gaussian response model

We consider the development of a model for fitting longitudinal and multilevel data such as

that illustrated in Figure 5.1. There are a number of things to consider when developing

a model that best represents data of this type. For instance, the repeated measures or

longitudinal aspect is crucial since one would expect, upon inspection of Figure 5.1, that

utilising within-subject information would be helpful. So, at the very least we would want

to include a variance component that controls for the deviation within each subject, i.e.,

a random intercept. In addition, one might also consider a random slope which would
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Figure 5.1: Example of a longitudinal two-level model data-set.

account for possible variability in the slopes of the growth curves.

The nonlinearity of such data suggests that incorporation of a nonparametric function

f would be beneficial. However, f would represent a global function which does not depend

on each subject. In order to cater for each individual’s nonlinear component, we might

consider a model of the following form:

yij = f(xij) + gi(xij) + εij , 1 ≤ i ≤m, 1 ≤ j ≤ ni, (5.1)

where f is a smooth function and the gi, 1 ≤ i ≤m, are random functions with mean zero.

Both f and g can be modeled as regression splines and then placed into the mixed model

framework.

The regression splines associated with f have a fixed component that caters for the

linear part of the model, and a random component that allows for departures from linearity.

It is important to note, on the other hand, since the gi are random with zero mean, the

linear part of the regression spline is random, rather than fixed. A linear penalised spline

110



5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

model for (5.1) is

f(xij) = β0 + β1xij + Lgbl

∑
	=1

ugbl

	 zgbl

	 (xij)

and gi(xij) = δ0i + δ1i xij + Lgrp

∑
	=1

ugrp

il zgrp

	 (xij), 1 ≤ i ≤m, 1 ≤ j ≤ ni,

(5.2)

where the ugbl

	 and zgbl

	 (xij) are the spline coefficient and spline basis function for the 
th

knot in the global part of the model, that is, corresponding to the highest level of the

two-level model structure. The ugrp

il and zgrp

	 (xij) are the spline coefficient and spline basis

function for the 
th knot of the ith subject, that corresponding to the lower level of the

two-level model structure. A popular choice for the zgbl

	 and zgrp

	 are suitably transformed

cubic O’Sullivan splines, as described in Section 1.10. Equations (5.1) and (5.2) can be

represented in the mixed model representation as follows.

5.2.1 Mixed model representation

We define the following linear and non-linear predictors:

xij = [1 xij], zgbl

ij = [zgbl

1 (xij) . . . zgbl

Lgbl(xij)] and zgrp

ij = [zgrp

1 (xij) . . . zgrp

Lgrp(xij)] .
In addition, we define

β = [β0 β1]⊺, δi = [δ0i δ1i]⊺,
ugbl = [ugbl

1 . . . ugbl

Lgbl]⊺, ugrp

i = [ugrp

i1 . . . ugrp

iLgrp]⊺. (5.3)

We can now write (5.2) as

f(xij) = xijβ + zgbl

ij u
gbl,

gi(xij) = xijδi + zgrp

ij ugrp

i .

We set Cov(ugbl) = σ2
gblI, Cov(δi) = Σ, an unstructured 2 × 2 covariance matrix which

allows for deviation from the typical linear component and lastly we set Cov(ugrp

i ) = σ2
grpI.
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We can now incorporate (5.1) into a mixed model framework by letting:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11⋮
x1n1⋮
xm1⋮
xmnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β = ⎡⎢⎢⎢⎢⎣
β0

β1

⎤⎥⎥⎥⎥⎦ and (5.4)

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zgbl

11 x11 zgrp

11 0 0 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
zgbl

1n1
x1n1 zgrp

1n1
0 0 . . . 0 0

zgbl

21 0 0 x21 zgrp

21 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
zgbl

2n2
0 0 x2n2 zgrp

2n2
. . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
zgbl

m1 0 0 0 0 . . . xm1 zgrp

m1⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
zgbl
mnm

0 0 0 0 . . . xmnm zgrp
mnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ugbl

δ1

ugrp

1

δ2

ugrp

2⋮
δm

ugrp
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

so we can use the mixed model representation

y =Xβ +Zu + ε,

where Cov

⎡⎢⎢⎢⎢⎣
u

ε

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
gblILgbl

0 0

0 blockdiag
1≤i≤m (Σ , σ2

grpILgrp) 0

0 0 σ2
εI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.6)

This semiparametric regression model can be treated using the following Gaussian linear

mixed model:

y∣u ∼ N (Xβ +Zu, σ2
εI) , u ∼ N

⎛⎜⎝0,
⎡⎢⎢⎢⎢⎢⎣
σ2

gblILgbl
0

0 blockdiag
1≤i≤m (Σ , σ2

grpILgrp)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠ . (5.7)

5.2.2 Bayesian inference

Fitting (5.7) using standard mixed model software such as lme() (Pinheiro et al., 2009)

in the R computing language is achievable, but time consuming. Alternatively, we can

work with a hierarchical Bayesian version of (5.7) which warrants direct implementation

in standard software. We enforce σgbl, the σgrp,i, 1 ≤ i ≤m, and the square-rooted diagonal

entries of Σ to possess Half-t prior distributions. This specification also allows for corre-
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lation parameters within Σ to have uniform distributions on (−1,1), as shown in Huang

et al. (2013). Such priors are attained through auxiliary variable constructions exhibited

in Result 1.4.6.

In its entirety, the Bayesian hierarchical two-level Gaussian response model we deal

with here is:

y ∣β, u, σ2
ε ∼ N (Xβ +Z u, σ2

εI) , β ∼ N (0, σ2
βI2) ,

u∣σ2
gbl, Σ, σ

2
grp ∼ N

⎛⎜⎝0,
⎡⎢⎢⎢⎢⎢⎣
σ2

gblILgbl
0

0 blockdiag
1≤i≤m (Σ , σ2

grpILgrp)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠ ,

σ2
ε ∣aε ∼ Inverse-Gamma (12 , 1/aε) , aε ∼ Inverse-Gamma (12 , 1/A2

ε) ,
σ2

gbl ∣agbl ∼ Inverse-Gamma (12 , 1/agbl) , agbl ∼ Inverse-Gamma (12 , 1/A2
gbl) ,

Σ ∣aΣ,1, aΣ,2 ∼ Inverse-Wishart (ν + 2 − 1, 2 ν diag (1/aΣ,1, 1/aΣ,2)) ,
aΣ,j ∼ Inverse-Gamma (12 , 1/A2

Σ,j) , 1 ≤ j ≤ 2,

σ2
grp ∣agrp ∼ Inverse-Gamma (12 , 1/agrp) , agrp ∼ Inverse-Gamma (12 , 1/A2

grp) .

(5.8)

where aε, agbl, aΣ,j , and agrp represent the auxiliary variables that impose the aforemen-

tioned non-informative prior distributions on σ2
ε , σ

2
gbl, Σ, and σ2

grp, respectively. We also

note that (5.8) encompasses the setting of hyperparameters ν, σβ , Aε, Agbl, AΣ,1, AΣ,2 and

Agrp, all of which are bound to be positive. The recommended setting for ν is 2, which

ensures that Property 4 of Huang et al. (2013) holds. Non-informativity is achieved for the

remaining hyperparameters when they are set to very large values. Our default setting,

assuming the data has been transformed to have mean zero and unit standard deviation,

is 105.

Figure 5.2 shows a directed acyclic graph representation of model (5.8) where aΣ =
[aΣ,1, aΣ,2]⊺, δ = [δ1, . . . ,δm]⊺ and ugrp = [ugrp

1 , . . . ,ugrp
m ]⊺.

5.2.3 Mean field variational Bayes methodology

The underpinning assumption of the MFVB approach for model (5.8) is to impose an

approximate product density restriction to the joint posterior density function of the form

p(β,u, aε, agbl,aΣ, agrp, σ
2
ε , σ

2
gbl,Σ, σ2

grp∣y) ≈ q(β,u, aε, agbl,aΣ, agrp)
× q(σ2

ε , σ
2
gbl,Σ, σ2

grp). (5.9)

Simplicity of the requisite calculations arise as a result of the graphical layout of model

(5.8) as conveyed by Figure 5.2. The graphical structure of (5.8) is useful in determining
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β y σ2
ε aε

ugbl δ ugrp

σ2
gbl Σ σ2

grp

agbl aΣ agrp

Figure 5.2: Directed acyclic graph corresponding to the Bayesian hierarchical two-level
Gaussian response model in (5.8).

additional factorizations, i.e., induced factorizations. Factorizations such as these, can be

observed using a straightforward graphical test, known as moralisation, as explained in

Section 1.8.2. For example, all paths between σ2
ε and {σ2

gbl,Σ, σ2
grp} in Figure 5.2 must

visit at least one of {y,β,u}. That is, the set of nodes {y,β,u} separates σ2
ε from the set

{σ2
gbl,Σ, σ2

grp}. The use of Theorem 1.8.1 gives the result

σ2
ε ⊥⊥ {σ2

gbl,Σ, σ2
grp}∣{y,β,u}.

Continuing this process for all nodes in Figure (5.2), we achieve the following induced

factorization:

q(β,u, aε, agbl,aΣ, agrp, σ
2
ε , σ

2
gbl, σ

2
grp,Σ) ≈

q(β,u) q(σ2
ε) q(σ2

gbl) q(Σ) q(σ2
grp) q(aε) q(agbl)

⎧⎪⎪⎨⎪⎪⎩
2∏

j=1
q(aΣ,j)

⎫⎪⎪⎬⎪⎪⎭ q(agrp). (5.10)

The q-densities are chosen to minimize the Kullback-Leibler distance between the left-

hand-side and right-hand-side of (5.9). As outlined in Section 1.5 the optimal q-densities,

denoted by q∗, can be obtained through an iterative scheme arising from relationships

such as

q∗(Σ) ∝ expEq {log p(Σ∣rest)} , (5.11)
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where ‘rest’ denotes the random variables in the model not including Σ. The full condi-

tional distributions each have standard forms resulting in closed form expressions for the

optimal q-densities. As a result, the optimal factors on the right-hand side of (5.10) have

the following forms (details of the derivation can be found in Appendix 5.A):

q∗(β,u) is the N(μq(β,u),Σq(β,u)) density function,

q∗(σ2
ε) is the Inverse-Gamma(1

2 (
m∑
i=1

ni + 1) , Bq(σ2
ε)) density function,

q∗(σ2
gbl) is the Inverse-Gamma(12(Lgbl + 1),Bq(σ2

gbl
)) density function,

q∗(Σ) is the Inverse-Wishart(ν +m + 1,Bq(Σ)) density function,

q∗(σ2
grp) is the Inverse-Gamma(12(mLgrp + 1),Bq(σ2

grp)) density function,

q∗(aε) is the Inverse-Gamma(1,Bq(aε)) density function,

q∗(agbl) is the Inverse-Gamma(1,Bq(agbl)) density function,

q∗(aΣ,j) is the Inverse-Gamma(ν2 + 1,Bq(aΣ,j)) density function, 1 ≤ j ≤ 2,

q∗(agrp) is the Inverse-Gamma(1,Bq(agrp)) density function,

(5.12)

for parameters μq(β,u) and Σq(β,u), the mean vector and covariance matrix of q∗(β,u),
Bq(σ2

ε), the rate parameter of q∗(σ2
ε), Bq(σ2

gbl
), the rate parameter of q∗(σ2

gbl), Bq(Σ), the
rate matrix of q∗(Σ), Bq(σ2

grp), the rate parameter of q∗(σ2
grp), Bq(aε), the rate parameter

of q∗(aε), Bq(agbl), the rate parameter of q∗(agbl), Bq(aΣ,j), the rate parameter of q∗(aΣ,j)
and Bq(agrp), the rate parameter of q∗(agrp). The parameters in these optimal q-densities

are obtained through a näıve implementation which results in Algorithm 5 and uses the

notation C ≡ [X ∣Z]. As seen from (5.5) the Z matrix requires storage of zero’s which

can become computationally expensive given a large value for m. We aim to alleviate the

restriction of storing these zero’s in Section 5.2.4.

Convergence of Algorithm 5 is determined using the marginal log-likelihood lower
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Set up initial values:

μq(1/σ2
ε), μq(1/σ2

gbl
), μq(1/σ2

grp), μq(1/aε), μq(1/agbl), μq(1/agrp) > 0, μq(1/aΣ,j) > 0,

1 ≤ j ≤ 2, Σq(β,u), and M q(Σ−1) positive definite.

Cycle through:

μq(β,u) ← μq(1/σ2
ε)Σq(β,u)C⊺y

Σq(β,u) ← (μq(1/σ2
ε)C⊺C

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ−2β I2 0 0

0 μ
q(1/σ2

gbl
)ILgbl

0

0 0 blockdiag
1≤i≤m (M q(Σ−1) , μq(1/σ2

grp)ILgrp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠

−1

Bq(σ2
ε) ← 1

2
{∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} + μq(1/aε)

μq(1/σ2
ε) ← 1

2 (
m∑
i=1

ni + 1)/Bq(σ2
ε)

Bq(aε) ← μq(1/σ2
ε) +A−2ε ; μq(1/aε) ← 1/Bq(aε)

B
q(σ2

gbl
) ← 1

2
{∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μq(1/agbl)

μ
q(1/σ2

gbl
) ← 1

2 (Lgbl + 1) /B
q(σ2

gbl
)

Bq(agbl) ← μ
q(1/σ2

gbl
) +A−2gbl; μq(1/agbl) ← 1/Bq(agbl)

Bq(σ2
grp) ← 1

2
{∥ μq(ugrp) ∥2 +tr (Σq(ugrp))} + μq(1/agrp)

μq(1/σ2
grp) ← 1

2 (mLgrp + 1) /Bq(σ2
grp)

Bq(agrp) ← μq(1/σ2
grp) +A−2grp; μq(1/agrp) ← 1/Bq(agrp)

Bq(Σ) ← m∑
i=1

{μq(δi)μ⊺q(δi) +Σq(δi)} + 2νdiag (μq(1/aΣ,1), μq(1/aΣ,2))
M q(Σ−1) ← (ν +m + 1)B−1q(Σ)
For j = 1,2:

Bq(aΣ,j) ← ν (M q(Σ−1))jj + 1/A2
Σ,j , μq(1/aΣ,j) ← (ν

2 + 1) /Bq(aΣ,j)

until the increase in log {p(y; q)} is negligible.

Algorithm 5: Näıve MFVB algorithm for the estimation of the optimal parameters in
q∗ (β,u), q∗ (σ2

ε), q∗ (aε), q∗ (σ2
gbl), q∗ (agbl), q∗ (σ2

grp), q∗ (agrp), q∗ (Σ), and q∗ (aΣ).
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bound (Appendix 5.B shows details on this derivation):

log p(y; q) = 1
2(ν + p − 1) log(2ν) − 1

2

m∑
i=1

ni log(2π) − 4 log(π) − p
2 log(σ2

β)
− 1
σ2
β

{∥ μq(β) ∥2 +tr (Σq(β))} + 1
2 log ∣Σq(β,u)∣

+1
2 {p +Lgbl +m(p +Lgrp)} − log (Cp,ν+p−1) + log (Cp,ν+m+p−1)

−1
2 (ν + p +m − 1) log ∣Bq(Σ)∣ + log Γ{1

2 (
m∑
i=1

ni + 1)}
−1
2 (

m∑
i=1

ni + 1) log (Bq(σ2
ε)) + log Γ{1

2 (Lgbl + 1)}
−1
2 (Lgbl + 1) log (B

q(σ2
gbl
)) + log Γ{1

2 (m ×Lgrp + 1)}
−1
2 (m ×Lgrp + 1) log (Bq(σ2

grp)) − log (Aε) − log (Bq(aε))
+μq(1/σ2

ε)μq(1/aε) − log (Agbl) − log (Bq(agbl)) + μ
q(1/σ2

gbl
)μq(1/agbl)

− log (Agrp) − log (Bq(agrp)) + μq(1/σ2
grp)μq(1/agrp) −

p∑
j=1

log (AΣ,j)
+p log Γ{1

2 (ν + p)} − 1
2 (ν + p − 1) p∑

j=1
log (Bq(aΣ,j))

+ p∑
j=1

ν (M q(Σ−1))jj μq(1/aΣ,j),

(5.13)

where p = 2 is the number of columns in the X matrix, which also corresponds to the

dimension of Σ.

5.2.4 Streamlining Mean field variational Bayes for the two-level Gaus-

sian response model

The näıve nature of the implementation given by Algorithm 5, stems from the fact that the

update for the covariance matrix Σq(β,u) requires storing and inverting a matrix which

has its row length equal to that of the C matrix and thus can become infeasible for

large multilevel/longitudinal datasets. Lee & Wand (2015) develop a streamlined MFVB

algorithm for efficient fitting and inference in large longitudinal and multilevel data sets. In

particular they develop streamlined MFVB algorithms for the two-level Gaussian response

model and the two-level binary response model. We focus on the former algorithm and

slightly adjust their Algorithm 2 to cater to (5.8).

In keeping with the notation used in Lee & Wand (2015) we further partition the
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following vectors and matrices:

y =
⎡⎢⎢⎢⎢⎢⎢⎣
y1⋮
ym

⎤⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎣
X1⋮
Xm

⎤⎥⎥⎥⎥⎥⎥⎦
, Zgbl =

⎡⎢⎢⎢⎢⎢⎢⎣
Zgbl

1⋮
Zgbl

m

⎤⎥⎥⎥⎥⎥⎥⎦
, and ZR =blockdiag

1≤i≤m (ZR
i ) ,

where

yi =
⎡⎢⎢⎢⎢⎢⎢⎣
yi1⋮
yini

⎤⎥⎥⎥⎥⎥⎥⎦
, Xi =

⎡⎢⎢⎢⎢⎢⎢⎣
1 xi1⋮ ⋮
1 xini

⎤⎥⎥⎥⎥⎥⎥⎦
, Zgbl

i =
⎡⎢⎢⎢⎢⎢⎢⎣
zgbl

i1
⊺

⋮
zgbl

ini

⊺

⎤⎥⎥⎥⎥⎥⎥⎦
, and ZR

i =
⎡⎢⎢⎢⎢⎢⎢⎣
x⊺i1 zgrp

i1
⊺

⋮ ⋮
x⊺ini

zgrp

ini

⊺

⎤⎥⎥⎥⎥⎥⎥⎦
.

In addition, we partition the following global and random effects:

u = ⎡⎢⎢⎢⎢⎣
ugbl

uR

⎤⎥⎥⎥⎥⎦ , and Z = [Zgbl ZR] ,

where uR = [(uR
1 )⊺ . . . (uR

m)⊺]⊺, uR
i = [δ⊺i (ugrp

i )⊺]⊺ and ugbl is defined in (5.3). Finally,

Lee & Wand (2015) suggest the useful notation Cgbl = [X Zgbl] where Cgbl

i = [Xi Z
gbl

i ] is
the sub-matrix of Cgbl corresponding to the ith subject. With the aid of this new notation,

a streamlined version of Algorithm 5 is presented in Algorithm 6.

Convergence of Algorithm 6 is determined using the marginal log-likelihood lower

bound:

log p(y; q) = 1
2p(ν + p − 1) log(2ν) − 1

2

m∑
i=1

ni log(2π) − 4 log(π) − p
2 log(σ2

β)
− 1
2σ2

β

{∥ μq(β) ∥2 +tr (Σq(β))} + 1
2(p +Lgbl +m(p +Lgrp))

−1
2

m∑
i=1

log ∣μq(1/σ2
ε) (ZR

i )⊺ZR
i + blockdiag(Mq(Σ−1), μq(1/σ2

grp)ILgrp) ∣
−1
2 log ∣Σq(β,ugbl)∣ − log (Cp,ν+p−1) + log (Cp,ν+m+p−1)

+ log Γ{1
2 (

m∑
i=1

ni + 1)} − 1
2 (

m∑
i=1

ni + 1) log (Bq(σ2
ε)) + log Γ (12 (Lgbl + 1))

−1
2 (Lgbl + 1) log (B

q(σ2
gbl
)) + log Γ{1

2 (m ×Lgrp + 1)} + p log Γ (12 (ν + p))
−1
2 (mLgrp + 1) log (Bq(σ2

grp)) − log (Aε) − log (Bq(aε)) + μq(1/σ2
ε)μq(1/aε)

− log (Agbl) − log (Bq(agbl)) + μ
q(1/σ2

gbl
)μq(1/agbl) − log (Agrp) − log (Bq(agrp))

+μq(1/σ2
grp)μq(1/σ2

grp) −
p∑

j=1
log (AΣ,j) − 1

2 (ν + p − 1) p∑
j=1

log (Bq(aΣ,j))
+ p∑

j=1
ν (M q(Σ−1))jj μq(1/aΣ,j) − 1

2 (ν + p +m − 1) log ∣Bq(Σ)∣.
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Set up initial values:

μq(1/σ2
ε) > 0, μq(1/aε) > 0, μq(1/σ2

gbl
) > 0, μq(1/σ2

grp) > 0, μq(1/aΣ,j) > 0, 1 ≤ j ≤ 2, M q(Σ−1)
positive definite.

Cycle through:

S ← 0; s← 0

For i = 1, . . . ,m:

Gi ← μq(1/σ2
ε) (Cgbl

i )⊺ZR
i

H i ← {μq(1/σ2
ε) (ZR

i )⊺ZR
i + blockdiag(Mq(Σ−1), μq(1/σ2

grp)ILgrp)}−1
S ← S +GiH iG

⊺
i ; s← s +GiH i (ZR

i )⊺ yi

Σq(β,ugbl) ←
⎧⎪⎪⎨⎪⎪⎩μq(1/σ2

ε) (Cgbl)⊺Cgbl + ⎡⎢⎢⎢⎣
σ−2β I2 0
0 μ

q(1/σ2
gbl
)ILgbl

⎤⎥⎥⎥⎦ − S

⎫⎪⎪⎬⎪⎪⎭
−1

μq(β,ugbl) ← μq(1/σ2
ε)Σq(β,ugbl) {(Cgbl)⊺ y − s}

For i = 1, . . . ,m:

Σq(uR
i ) ←H i +H iG

⊺
i Σq(β,ugbl)GiH i

μq(uR
i ) ←H i {μq(1/σ2

ε) (ZR
i )⊺ yi −G⊺i μq(β,ugbl)}

Bq(σ2
ε) ← μq(1/aε) + 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TTTTTTTTTTTTTTTTTTTTTTT
y −Cgblμq(β,ugbl) −

⎡⎢⎢⎢⎢⎢⎣
ZR

1 μq(uR
1 )⋮

ZR
mμq(uR

m)

⎤⎥⎥⎥⎥⎥⎦

TTTTTTTTTTTTTTTTTTTTTTT

2

+tr{(Cgbl)⊺ Cgbl Σq(β,ugbl)} + m∑
i=1

tr{(ZR
i )⊺ ZR

i Σq(uR
i )}

−2μ−1q(1/σ2
ε)

m∑
i=1

tr (GiH iG
⊺
iΣq(β,ugbl))]

μq(1/σ2
ε) ← 1

2 (
m∑
i=1

ni + 1)/Bq(σ2
ε); μq(1/aε) ← 1/ {μq(1/σ2

ε) +A−2ε }
B

q(σ2
gbl
) ← 1

2
{∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μq(1/agbl)

μ
q(1/σ2

gbl
) ← 1

2 (Lgbl + 1) /B
q(σ2

gbl
), μq(1/agbl) ← 1/{μ

q(1/σ2
gbl
) +A−2gbl}

Bq(σ2
grp) ← 1

2
{∥ μq(ugrp) ∥2 +tr (Σq(ugrp))} + μq(1/agrp)

μq(1/σ2
grp) ← 1

2 (mLgrp + 1) /Bq(σ2
grp); μq(1/agrp) ← 1/{μq(1/σ2

grp) +A−2grp} ,
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Bq(Σ) ← m∑
i=1

{μq(δi)μ⊺q(δi) +Σq(δi)} + 2νdiag (μq(1/aΣ,1), μq(1/aΣ,2))
M q(Σ−1) ← (ν +m + 1)B−1q(Σ)
For j = 1,2:

Bq(aΣ,j) ← ν (M q(Σ−1))jj + 1/A2
Σ,j , μq(1/aΣ,j) ← (ν

2 + 1) /Bq(aΣ,j)

until the increase in log {p(y; q)} is negligible.

For i = 1, . . . ,m ∶
Λq(β,ugbl,uR

i ) ≡ Eq [{[ β
ugbl ] −μq(β,ugbl)}{uR

i −μq(uR
i )}⊺] ← −Σq(β,ugbl)GiH i

Algorithm 6: Streamlined MFVB algorithm for the two-level Gaussian response model
given in (5.8).

The difference between this lower bound expression and the one given in (5.2.3) is replace-

ment of the term

log ∣Σq(β,u)∣
with − m∑

i=1
log ∣μq(1/σ2

ε) (ZR
i )⊺ZR

i + blockdiag(Mq(Σ−1), μq(1/σ2
grp)ILgrp) ∣ − log ∣Σq(β,ugbl)∣,

which is used to streamline the calculation of log ∣Σq(β,u)∣. Details on this calculation are

given in the appendix of Lee & Wand (2015).

In order to produce variability estimates when plotting subject-specific mean estimates,

Lee & Wand (2015) propose the following partition of the q-density covariance matrix of

the vector of coefficients for the ith subject:

Covq

⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣

β

ugbl

uR
i

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠ = ⎡⎢⎢⎢⎢⎣

Σq(β,ugbl) Λq(β,ugbl,uR
i )

Λq(β,ugbl,uR
i )⊺ Σq(uR

i )

⎤⎥⎥⎥⎥⎦ .

It is important to keep in mind that the time savings when using a streamlined MFVB

approach for the Bayesian hierarchical two-level Gaussian response model given in (5.19)

will not be as impressive as the ones achieved by using the two-level model in Lee & Wand

(2015). The reason for this lies in the structure of the H i matrix. For example, in Lee

& Wand (2015) there exists no zero’s in H i, however in (5.19), since we incorporate the

variance of the spline components for the group specific curve of each individual there exists
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blocks of zeros concerning the μq(1/σ2
grp)ILgrp term in Algorithm 6. As a result, this should

not be considered a fully streamlined version of Algorithm 5 and further investigation into

a more robust version of Algorithm 6 is certainly warranted.

5.2.5 Simulation study

We carried out an extensive simulation study in order to assess the speed of Algorithm

6 against that of Algorithm 5. We generated 25 data-sets according to (5.1) where the

xij
ind.∼ Uniform(0, 1), ugbl

	
ind.∼ N(0, σ2

gbl), εij ind.∼ N(0, σ2
ε), δi ind.∼ N(0, Σ) and the ugrp

i	
ind.∼

N(0, σ2
grp). The true parameter values were specified as

β0 = 0.2, β1 = 1.8, σ2
gbl = 1.5, σ2

ε = 0.05, Σ = ⎡⎢⎢⎢⎢⎣
0.4 0.1

0.1 0.4

⎤⎥⎥⎥⎥⎦ and σ2
grp = 0.29.

The number of subjects between simulation studies was varied, wherem ∈ {25,75,125,175}
and the within subject sample size remained constant at ni = 10, 1 ≤ i ≤m.

Algorithm 5 and 6 were implemented in the R programming language. These computa-

tions were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes of

random access memory). Table 5.1 summarises the computation times for each approach.

As the number of subjects m increase moderately, the average computing time for the

näıve approach increases very quickly. The average time increase for the näıve approach

from m = 25 to m = 175 is approximately 3 hours, compared to the streamlined approach

which was just under 1 minute. This is represented in the Ratio column of Table 5.1

where we can see exactly how much faster the streamlined approach is in comparison to

the näıve approach. Keeping in mind that the largest value of m is 175, the possibilities

of time saving given larger values of m seem endless.

m Näıve Streamlined Ratio

25 37.16 (17.49) 9.52 (3.75) 3.86

75 761.16 (248.39) 20.44 (6.13) 37.24

125 3178.27 (562.68) 31.45 (5.22) 101.06

175 11181.61 (4587.89) 56.49 (22.36) 197.94

Table 5.1: Average (standard deviation) run time in seconds for näıve and streamlined
MFVB fitting of the two-level Gaussian response model in (5.1).
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5.2.6 Application to data from a growth study

In this section we provide an example of streamlined MFVB fitting for growth data on

children in Indianapolis (source: Pratt et al., 1989). These data possess a two-level struc-

ture where the repeated measurements on height and age are at the first level, and the

persons being measured are at the second level. In this data-set a person is identified as

being either black or white by the use of the indicator variable black. We only use the

information from this data-set relating to male individuals. This gives m = 116, and each

ni takes on a value between 10 and 26 repeated measurements each. The variables and

their description are given in Table 5.2.

Variable Description

id person identifier

height person’s height in centimeters

age person’s age

black indicator of person being black

Table 5.2: Description of the Indiana growth data for male subjects.

We are interested in what the effect of being either black or white would have on a person’s

height. Thus an interaction term would be necessary in our model to account for this.

The Indiana growth data is divided into two groups:

A ≡ white males B ≡ black males,

and to quantify the difference between the two groups we extend (5.2) to:

fA(age) = βA
0 + βA

1 age + Lgbl

∑
	=1

ugbl

A,	 z
gbl

	 (age),
fB(age) = βA

0 + βBvsA
0 + (βA

1 + βBvsA
1 )age + Lgbl

∑
	=1

ugbl

B,	 z
gbl

	 (age),
and gi(age) = δ0i + δ1i age + Lgrp

∑
	=1

ugrp

il zgrp

	 (age).
(5.14)

This allows one to estimate the contrast function given in (5.16). We define the parameter

vectors to be

β ≡
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βA
0

βA
1

βBvsA
0

βBvsA
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u ≡

⎡⎢⎢⎢⎢⎢⎢⎣
ugbl

A

ugbl
B

uR

⎤⎥⎥⎥⎥⎥⎥⎦
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where

ugbl
A ≡

⎡⎢⎢⎢⎢⎢⎢⎣
ugbl

A,1⋮
ugbl

A,Lgbl

⎤⎥⎥⎥⎥⎥⎥⎦
, ugbl

B ≡
⎡⎢⎢⎢⎢⎢⎢⎣

ugbl

B,1⋮
ugbl

B,Lgbl

⎤⎥⎥⎥⎥⎥⎥⎦
.

In addition, the design matrices X and Z are

X ≡
⎡⎢⎢⎢⎢⎢⎢⎣
1 age1 IA

1 ⊙ 1 IA
1 ⊙ age1⋮ ⋮ ⋮ ⋮

1 agem IA
m ⊙ 1 IA

m ⊙ agem

⎤⎥⎥⎥⎥⎥⎥⎦
, Z ≡ [Zgbl

A ∣ Zgbl
B ∣ ZR] ,

where

Zgbl
A ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

IA
1 ⊙ zgbl

1 (age1) . . . IA
1 ⊙ zgbl

Lgbl
(age1)⋮ ⋱ ⋮

IA
m ⊙ zgbl

1 (agem) . . . IA
m ⊙ zgbl

Lgbl
(agem)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

IA
ij ≡ { 1 if (ageij , heightij) is of type A,

0 if (ageij , heightij) is of type B.

The ni × 1 vector IA
i consists of the IA

ij and the design matrix Zgbl
B is defined in a similar

way to Zgbl
A but with IA

i replaced by 1 − IA
i . The full Bayesian model is then

height ∣β, u, σ2
ε ∼ N (Xβ +Z u, σ2

εI) , β ∼ N (0, σ2
βI2) ,

u∣ (σA
gbl)2 , (σB

gbl)2 , Σ, σ2
grp ∼ N

⎛⎜⎜⎜⎜⎝
0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(σA
gbl)2 0 0

0 (σB
gbl)2 0

0 0 blockdiag
1≤i≤m (Σ , σ2

grpILgrp)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
,

σε ∼ Half-Cauchy (Aε) , σA
gbl ∼ Half-Cauchy (AA

gbl) ,
σB

gbl ∼ Half-Cauchy (AB
gbl) , σgrp ∼ Half-Cauchy (Agrp) .

Σ ∣aΣ,1, aΣ,2 ∼ Inverse-Wishart (ν + 2 − 1, 2 ν diag (1/aΣ,1, 1/aΣ,2)) ,
aΣ,j ∼ Inverse-Gamma (12 , 1/A2

Σ,j) , 1 ≤ j ≤ 2.

(5.15)

We use an equivalent set-up and partition of the mixed model framework as shown in

Sections 5.2.1 and 5.2.4. Model (5.15) was fit using the streamlined MFVB algorithm as

shown in Algorithm 6, where the variables height and age were standardised to have zero

mean and unit variance and the values of the hyperparameters were all set to 105. The

rstan package which uses Stan code, was used for performing MCMC with a burn-in of

5000, number of further iterations of 5000 and a thinning factor of 5. The MFVB iterations

were terminated when the increase in the corresponding log p (height; q) fell below 10−8.
As mentioned in Chapter 2, making time comparisons fair between MFVB and MCMC

is quite difficult, due to convergence for each approximation method being vastly different.

123



5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

132 134 136 138 140

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

fA(Q1) + g94(Q1)

90%

accuracy

MCMC
MFVB

144 146 148 150 152 154 156

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

fA(Q2) + g94(Q2)

85%

accuracy

170 172 174 176 178 180

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

fA(Q3) + g94(Q3)

95%

accuracy

137 138 139 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fB(Q1) + g109(Q1)

83%

accuracy

150 151 152 153 154 155

0.
0

0.
2

0.
4

0.
6

0.
8

fB(Q2) + g109(Q2)

83%

accuracy

168 169 170 171

0.
0

0.
2

0.
4

0.
6

fB(Q3) + g109(Q3)

90%

accuracy

Figure 5.3: Approximate posterior density functions obtained via MCMC and streamlined
MFVB for the growth Indiana data set. MFVB accuracy scores are displayed.

Here we make use of Stan as opposed to BUGS, which we have been using until now. Stan

is known to generally converge faster than BUGS as it is based on Hamiltonian Monte

Carlo sampling. Stan is also preferred for certain problems with a complex structure, such

as multilevel models.

Figure 5.3 illustrates the accuracy of the streamlined MFVB approach against the

MCMC benchmark. The parameters being monitored are the quartiles of the curve esti-

mates of the 94th and 109th individual. These are represented as fA(Qi) + g94(Qi) and

fB(Qi)+g109(Qi) for i = 1,2,3, where the 94th individual is white and the 109th individual

is black. The accuracy of the curve estimates for these parameters are reasonably high

considering the complexity of the model.

Figure 5.4 provides illustration of the approximate inference achieved by both stream-

lined MFVB and MCMC for the two-level Gaussian response model. It appears that the

subject-specific curve estimates and pointwise 95% credible sets are almost indistinguish-

able for both approaches, implying that the streamlined MFVB approach incurs little loss

of accuracy. It is immediately obvious that the streamlined MFVB fits are agreeing very

well with the longitudinal data for each individual. The MCMC fit took almost 3 hours,

whilst the streamlined MFVB fit took only 4 seconds.
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Figure 5.4: Group-specific estimates and pointwise 95% credible sets obtained via stream-
lined MFVB and MCMC for the Indiana growth data-set for male subjects.

Figure 5.5 illustrates the effect of the variable black on the height of male individuals.

This is given by the contrast curve

c(age) ≡ fB(age) − fA(age)
= βBvsA

0 + βBvsA
1 age + Lgbl∑

	=1
(ugbl

B,	 − ugbl

	,W) zgbl

	 (age). (5.16)

A contrast curve was generated for both MCMC and streamlined MFVB. It is evident

that at age 5, on average, black individuals are approximately 3.5cm taller than white

individuals. However, as they reach adolescence, black individuals are, on average, taller

by approximately 6cm. Finally, as males reach their early 20’s, the height differences

decrease to zero. In addition, the agreement of the curves produced by MCMC and
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Figure 5.5: Approximate contrast curves obtained via MCMC and streamlined MFVB for
the mean height difference between black and white males.

streamlined MFVB are quite pleasing, indicating little loss of accuracy.
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5.3 Three-level Gaussian response model

In this section, we extend the methodology shown in the previous section to cater to the

three-level Gaussian response model for both the näıve and streamlined MFVB situa-

tions. We apply this methodology to a data set which exhibits a three-level longitudinal

structure. These data represent frequency dependent backscatter coefficients for induced

tumors in rodents (source: Simpson, 2013). There are several slices or probe locations in

which each tumor is scanned. Five different transducers were used on various slices to

perform scanning. The variables and their descriptions are given in Table 5.3. Figure 5.6

Variable Description

freq frequency measurement

bsc backscatter coefficient (converted to decibel scale)

L9h4 indicator of transducer L9-4 being used

L40 indicator of transducer L40 being used

MS200 indicator of transducer MS200 being used

MS400 indicator of transducer MS400 being used

Table 5.3: Description of the rodent tumor dataset.

illustrates the information from 10 rodents given in this dataset. Each panel represents a

different tumor corresponding to a rodent. The x-axis represents the frequency and the

y-axis represents the backscatter coefficients for each tumor. Each curve in each panel

corresponds to a different slice. Furthermore, within each panel, the colours correspond

to different transducers being used according to:

green L14-5
red L9-4
blue L40

orange MS200
purple MS400.

We use similar notation to that used in Section 5.2, where for example

bscijk ≡ kth backscatter coefficient for the jth slice within the ith tumor.

The generic three-level Gaussian response model extension, specific to the data presented

in Figure 5.6 is

bscijk ∼ N (f(freqijk) + gi(freqijk) + hij(freqijk), σ2
ε) ,

1 ≤ i ≤m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij ,
(5.17)
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Figure 5.6: Rodent tumor data set showing frequency dependent backscatter coefficients
for two different types of induced tumors in rodents. Each panel is for a different tumor
(name shown in top left corner). The type of tumor is shown in the bottom right corner
of each panel.

where we have m = 10 tumors, the ni range from being either 18, 19 or 20 slices (after

removing outlier slices) and the oij = 128 is constant throughout and we use o from now

on to represent the measurements in each slice. The global mean function has the form

f(x) = β0 + β1 x + β2L9h4 + β3L40 + β4MS200 + β5MS400 + Lgbl∑
	=1

ugbl

	 zgbl

	 (x),

128



5.3. THREE-LEVEL GAUSSIAN RESPONSE MODEL

where ugbl

	 ∣σ2
gbl

ind.∼ N {0, σ2
gbl}. In order to model the deviation from f for the ith tumor,

we further extend our model to include the function

gi(x) = δ0i + δ1ix + Lgrpout∑
	=1

ugrpout

	 zgrpout

	 (x), ⎡⎢⎢⎢⎢⎣
δ0i

δ1i

⎤⎥⎥⎥⎥⎦
ind.∼ N(0,Σgrpout),

ugrpout

	 ∣σ2
grpout

ind.∼ N(0, σ2
grpout),

where ‘grpout’ refers to each rodent’s information. In addition, to model the deviation

from gi for the ijth slice, we also make use of the function

hij(x) = γ0ij + γ1ijx + Lgrpinn∑
	=1

ugrpinn

	 zgrpinn

	 (x), ⎡⎢⎢⎢⎢⎣
γ0ij

γ1ij

⎤⎥⎥⎥⎥⎦
ind.∼ N(0,Σgrpinn),

ugrpinn

	 ∣σ2
grpinn

ind.∼ N(0, σ2
grpinn),

where ‘grpinn’ refers to the information involving the measurements for each slice. In order

to express our model in a mixed model framework, we first define the following vectors

and matrices:

β ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

β4

β5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ugbl ≡
⎡⎢⎢⎢⎢⎢⎢⎣
ugbl

1⋮
ugbl

Lgbl

⎤⎥⎥⎥⎥⎥⎥⎦
, ugrpout

full ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

ugrpout

1 ⋮
δm

ugrpout
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ugrpinn

full ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ11

ugrpinn

11⋮
γ1n1

ugrpinn

1n1⋮
γm1

ugrpinn

m1⋮
γmnm

ugrpinn
mnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

u ≡
⎡⎢⎢⎢⎢⎢⎢⎣

ugbl

ugrpout
full

ugrpinn
full

⎤⎥⎥⎥⎥⎥⎥⎦
,

where the δi and ugrpout

i are defined as in section 5.2.1. We define γij ≡ [γ0ij γ1ij]⊺ and

ugrpinn

ij ≡ [ugrpinn

1 , . . . , ugrpinn

Lgrpinn]⊺. The design matrices X and Z are

X ≡
⎡⎢⎢⎢⎢⎢⎢⎣
1 freq1 L9h41 L401 MS2001 MS4001⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 freqm L9h4m L40m MS200m MS400m

⎤⎥⎥⎥⎥⎥⎥⎦
,
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Z ≡ [Zgbl ∣ blockdiag
1≤i≤m (Xi ∣Zgrpout

i ) ∣ blockdiag
1≤i≤m (blockdiag

1≤j≤ni

(Xij ∣Zgrpinn

ij ))] ,
where

Zgbl ≡
⎡⎢⎢⎢⎢⎢⎢⎣
zgbl

1 (freq1) . . . zgbl

Lgbl(freq1)⋮ ⋱ ⋮
zgbl

1 (freqm) . . . zgbl

Lgbl(freqm)
⎤⎥⎥⎥⎥⎥⎥⎦
,

Zgrpout

i ≡
⎡⎢⎢⎢⎢⎢⎢⎣
zgrpout

1 (freqi1) . . . zgrpout

Lgrpout
(freqi1)⋮ ⋱ ⋮

zgrpout

1 (freqini
) . . . zgrpout

Lgrpout
(freqini

)
⎤⎥⎥⎥⎥⎥⎥⎦
,

Zgrpinn

ij ≡
⎡⎢⎢⎢⎢⎢⎢⎣
zgrpinn

1 (freqij1) . . . zgrpinn

Lgrpinn(freqij1)⋮ ⋱ ⋮
zgrpinn

1 (freqijo) . . . zgrpinn

Lgrpinn(freqijo)
⎤⎥⎥⎥⎥⎥⎥⎦
,

with freqi being the ni o × 1 vector containing the freqijk and Xi is the subset of X

corresponding to the ith tumor. We can now represent our model using the mixed model

framework:

y =Xβ +Zu + ε, (5.18)

G ≡ Cov(u) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
gblILgbl

0 0

0 blockdiag
1≤i≤m (Σgrpout , σ

2
grpoutILgrpout) 0

0 0 blockdiag
1≤j≤∑m

i=1 ni

(Σgrpinn , σ
2
grpinnILgrpinn

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5.3.1 Bayesian three-level Gaussian response model

Much like in the two-level case, fitting (5.18) using standard mixed model software such

as lme() in R is possible, but extremely time intensive. We opt to work with a Bayesian

version of (5.18) which allows direct implementation in standard Bayesian software. We

enforce σε, σgbl, Σgrpout, σgrpout, Σgrpinn and σgrpinn to possess half-t prior distributions on

(−1,1), as suggested by Huang et al. (2013). The standard deviation parameter priors are

achieved through auxiliary variable constructions as exhibited in Result 1.4.6. The full
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Bayesian three-level Gaussian response model for the rodent tumor data is:

y ∣β, u, σ2
ε ∼ N (Xβ +Z u, σ2

εI) , β ∼ N (0, σ2
βI6) , u∣G ∼ N (0,G) ,

σ2
ε ∣aε ∼ Inverse-Gamma (12 , 1/aε) , aε ∼ Inverse-Gamma (12 , 1/A2

ε) ,
σ2

gbl ∣agbl ∼ Inverse-Gamma (12 , 1/agbl) , agbl ∼ Inverse-Gamma (12 , A−2gbl) ,
Σgrpout ∣aΣgrpout,1, aΣgrpout,2 ∼ Inverse-Wishart (νgrpout + 2 − 1,

2 νgrp diag (1/aΣgrpout,1, 1/aΣgrpout,2)) ,
aΣgrpout,j ∼ Inverse-Gamma (1

2 , 1/A2
Σgrpout,j

) , 1 ≤ j ≤ 2,

σ2
grpout ∣agrpout ∼ Inverse-Gamma (12 , 1/agrpout) ,

agrpout ∼ Inverse-Gamma (12 , 1/A2
grpout) ,

Σgrpinn ∣aΣgrpinn,1, aΣgrpinn,2 ∼ Inverse-Wishart (νgrpinn + 2 − 1,

2 νgrpinn diag (1/aΣgrpinn,1, 1/aΣgrpinn,2)) ,
aΣgrpinn,j ∼ Inverse-Gamma (1

2 , 1/A2
Σgrpinn,j

) , 1 ≤ j ≤ 2,

σ2
grpinn ∣agrpinn ∼ Inverse-Gamma (12 , 1/agrpinn) ,

agrpinn ∼ Inverse-Gamma (12 , 1/A2
grpinn) ,

(5.19)

where aε, agbl, aΣgrpout , agrpout, aΣgrpinn and agrpinn are the auxiliary variables used for the

scale parameters in the model. Fitting (5.19) involves the setting of hyperparameters σβ ,

Aε, Agbl, νgrpout, AΣgrpout,1, AΣgrpout,2, Agrpout, νgrpinn, AΣgrpinn,1, AΣgrpinn,2 and Agrpinn. To

ensure that Property 4 of Huang et al. (2013) holds, we set νgrpout = νgrpinn = 2. For the

remaining hyperparameters, non-informativity is achieved when their values are large, e.g.,

105.

5.3.2 Mean field variational Bayes methodology

The essence of the MFVB approach for (5.19) is to approximate the joint posterior density

function with an approximate product density form

q(β, u, aε, agbl, aΣgrpout , agrpout, aΣgrpinn , agrpinn)
× q {σ2

ε , σ
2
gbl, Σgrpout, σ

2
grpout, Σgrpinn, σ

2
grpinn} .

Using induced factorisation theory, it is shown that a further factorisation is of the form:

q(β,u) q(σ2
ε) q (σ2

gbl) q(Σgrpout) q(σ2
grpout) q(aε) q(agbl)

× ⎧⎪⎪⎨⎪⎪⎩
2∏

j=1
q(aΣgrpout,j)

⎫⎪⎪⎬⎪⎪⎭ q(agrpout)
⎧⎪⎪⎨⎪⎪⎩

2∏
j=1

q(aΣgrpinn,j)
⎫⎪⎪⎬⎪⎪⎭ q(agrpinn). (5.20)

As mentioned in section 5.2.3 the optimal q-densities can be obtained through expressions

such as that given in (5.11). The full conditional distributions that we deal with all
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β

σ2
ε aε

y ugrpinn σ2
grpinn agrpinn

ugbl δ ugrpout γ

σ2
gbl

Σgrpout σ2
grpout Σgrpinn

agbl

aΣgrpout
agrpout aΣgrpinn

Figure 5.7: DAG corresponding to the Bayesian hierarchical three-level Gaussian response
model in (5.19).

have closed form expressions, resulting in our optimal q-densities possessing closed form

expressions. In light of this, the factors given in (5.20) have the following forms:

q∗(β,u) ∼ N(μq(β,u),Σq(β,u))
q∗(σ2

ε) ∼ Inverse-Gamma(1
2 (

m∑
i=1

ni + 1) , Bq(σ2
ε))

q∗ (σ2
gbl) ∼ Inverse-Gamma(1

2(Lgbl + 1),B
q(σ2

gbl
))

q∗(Σgrpout) ∼ Inverse-Wishart (νgrpout +m + 1,Bq(Σgrpout))
q∗(σ2

grpout) ∼ Inverse-Gamma (1
2(mLgrpout + 1),Bq(σ2

grpout))
q∗(Σgrpinn) ∼ Inverse-Wishart(νgrpinn + n∑

i=1
ni + 1,Bq(Σgrpinn)),

q∗(σ2
grpinn) ∼ Inverse-Gamma{1

2 (Lgrpinn

m∑
i=1

ni + 1) ,Bq(σ2
grpinn)} ,

q∗(aε) ∼ Inverse-Gamma(1,Bq(aε)), q∗(agbl) ∼ Inverse-Gamma(1,Bq(agbl))
q∗(agrpout) ∼ Inverse-Gamma(1,Bq(agrpout)),
q∗(agrpinn) ∼ Inverse-Gamma(1,Bq(agrpinn)),

q∗(aΣgrpout,j) ∼ Inverse-Gamma(νgrpout2 + 1,Bq(aΣgrpout,j
)) 1 ≤ j ≤ 2,

q∗(aΣgrpinn,j) ∼ Inverse-Gamma(νgrpinn2 + 1,Bq(aΣgrpinn,j)) 1 ≤ j ≤ 2.

(5.21)
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The derivation of (5.21) is similar to that shown for the two-level model in Appendix 5.A

and the parameters in (5.21) are defined analogously to that described in Section 5.2.3.

The values of these optimal parameters are obtained through an iterative scheme presented

as Algorithm 7, where

M q(G−1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μq(1/σgbl
2)ILgbl

0 0

0 blockdiag
1≤i≤m (M q(Σ−1grpout) , μq(1/σ2

grpout)ILgrpout) 0

0 0 blockdiag
1≤j≤∑m

i=1 ni

(M
q(Σ−1grpinn) , μq(1/σ2

grpinn)ILgrpinn
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We define

μq(ugbl) ≡ sub-vector of μq(β,u) corresponding to ugbl

and Σq(ugbl) ≡ sub-matrix of Σq(β,u) corresponding to ugbl.

The vectors μq(ugrpout), μq(δi), μq(ugrpinn), μq(γij) and their corresponding variance covari-

ance matrices are defined analogously. Algorithm 7 makes use of the variational lower

bound on the marginal log-likelihood. For model (5.19) and product restriction (5.20) it

133



5.3. THREE-LEVEL GAUSSIAN RESPONSE MODEL

Set up initial values:

μq(1/σ2
ε), μq(1/σ2

gbl
), μq(1/σ2

grpout), μq(1/σ2
grpinn), μq(1aε), μq(1/agbl), μq(1/agrpout),

μq(1/agrpinn) > 0, μq(1/aΣgrpout,j
), μq(1/aΣgrpinn,j) > 0, 1 ≤ j ≤ 2, Σq(β,u),

M q(Σ−1grpout), M q(Σ−1grpinn) positive definite.

Cycle through:

μq(β,u) ← μq(1/σ2
ε)Σq(β,u)C⊺y

Σq(β,u) ← (μq(1/σ2
ε)C⊺C + [ σ−2β Ip 0

0 M q(G−1) ])
−1

Bq(σ2
ε) ← 1

2
{∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} + μq(1/aε)

μq(1/σ2
ε) ← 1

2 (o
m∑
i=1

ni + 1)/Bq(σ2
ε); Bq(aε) ← μq(1/σ2

ε) +A−2ε ; μq(1/aε) ← 1/Bq(aε)

B
q(σ2

gbl
) ← 1

2
{∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μq(1/agbl)

μ
q(1/σ2

gbl
) ← 1

2 (Lgbl + 1) /B
q(σ2

gbl
)

Bq(agbl) ← μ
q{1/σ2

gbl
} + (Agbl)−2 ; μq(1/agbl) ← 1/Bq(agbl)

B
q(σ2

grpout) ← 1
2
{∥ μq(ugrpout) ∥2 +tr (Σq(ugrpout))} + μq(1/agrpout)

μ
q(1/σ2

grpout) ← 1
2 (mLgrpout + 1) /B

q(σ2
grpout)

Bq(agrpout) ← μ
q(1/σ2

grpout) +A−2grpout, μq(1/agrpout) ← 1/Bq(agrpout)

Bq(Σgrpout) ← m∑
i=1

{μq(δi)μ⊺q(δi) +Σq(δi)}
+2νgrpoutdiag(μq(1/aΣgrpout,1

), μq(1/aΣgrpout,2
))

M q(Σ−1grpout) ← (νgrpout +m + 1)B−1q(Σgrpout)
For j = 1,2: B

q(aΣgrpout,j
) ← νgrpout (M q(Σ−1grpout))jj + 1/A2

Σgrpout,j

μ
q(1/aΣgrpout,j

) ← (νgrpout

2
+ 1)/B

q(aΣgrpout,j
)

B
q(σ2

grpinn) ← 1
2
{∥ μq(ugrpinn) ∥2 +tr (Σq(ugrpinn))} + μq(1/agrpinn)

μ
q(1/σ2

grpinn) ← 1
2 (omLgrpinn + 1) /B

q(σ2
grpinn)

Bq(agrpinn) ← μ
q(1/σ2

grpinn) +A−2grpinn; μq(1/agrpinn) ← 1/Bq(agrpinn)
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Bq(Σgrpinn) ←
m∑
i=1

ni∑
j=1

{μq(γij)μ⊺q(γij) +Σq(γij)}
+2νgrpinndiag(μq(1/aΣgrpinn,1), μq(1/aΣgrpinn,2))

M
q(Σ−1grpinn) ← (νgrpinn + m∑

i=1
ni + 1)B−1

q(Σgrpinn)

For j = 1,2: B
q(aΣgrpinn,j) ← νgrpinn (M q(Σ−1grpinn))jj + 1/A2

Σgrpinn,j

μ
q(1/aΣgrpinn,j) ← (νgrpinn

2
+ 1)/B

q(aΣgrpinn,j)

until the increase in log {p(y; q)} is negligible.

Algorithm 7: Näıve MFVB algorithm for the estimation of the optimal parameters in
(5.21).

is shown that log {p(y; q)} has the following expression:

log p(y; q) = h

1
2(νgrpout + qgrpout − 1) log(2νgrpout) + 1

2(νgrpinn + qgrpinn − 1) log(2νgrpinn)
−1
2o

m∑
i=1

ni log(2π) − 5 log(π) − p
2 log(σ2

β) − 1
σ2
β

{∥ μq(β) ∥2 +tr (Σq(β))}
+1
2 log ∣Σq(β,u)∣ + log Γ{1

2 (Lgbl + 1)} − log (Cqgrpout,νgrpout+qgrpout−1)
+1
2 {p + 2Lgrpout +m(qgrpout +Lgrpout) + m∑

i=1
ni (qgrpinn +Lgrpinn)} − log (Bq(agbl))

+ log (Cqgrpout,νgrpout+m+qgrpout−1) − log (Cqgrpinn,νgrpinn+qgrpinn−1)
+ log (Cqgrpinn,νgrpinn+∑m

i=1 ni+qgrpinn−1) + log Γ{1
2 (o

m∑
i=1

ni + 1)} − log (Aε)
−1
2 (νgrpout + qgrpout +m − 1) log ∣Bq(Σgrpout)∣ − log (Bq(aε)) − log (Agbl)

−1
2 (νgrpinn + qgrpinn + m∑

i=1
ni − 1) log ∣Bq(Σgrpinn)∣ − 1

2 (o
m∑
i=1

ni + 1) log (Bq(σ2
ε))

+ log Γ{1
2 (Lgrpinn

m∑
i=1

ni + 1)} − 1
2 (Lgbl + 1) log (B

q(σ2
gbl
)) − log (Agrpinn)

−1
2 (mLgrpout + 1) log (B

q(σ2
grpout)) − 1

2 (Lgrpinn

m∑
i=1

ni + 1) log (B
q(σ2

grpinn))
+μq(1/σ2

ε)μq(1/aε) + μq(1/σ2
gbl
)μq(1/agbl) + log Γ{1

2 (mLgrpout + 1)}
− log (Bq(agrpout)) + μq(1/σ2

grpout)μq(1/agrpout) −
qgrpinn∑
j=1

log (AΣgrpinn,j)
− log (Agrpout) − qgrpout∑

j=1
log (AΣgrpout,j) + qgrpout log Γ{1

2 (νgrpout + qgrpout)}
−1
2 (νgrpout + qgrpout − 1) qgrpout∑

j=1
log (Bq(aΣgrpout,j

)) + qgrpinn log Γ{1
2 (νgrpinn + qgrpinn)}

(5.22)
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+∑qgrpout
j=1 νgrpout (M q(Σ−1grpout))jj μq(1/aΣS,j) − log (Bq(agrpinn))

−1
2 (νgrpinn + qgrpinn − 1) qgrpinn∑

j=1
log (Bq(aΣgrpinn,j)) + μq(1/σ2

grpinn)μq(1/agrpinn)
+∑qgrpinn

j=1 νgrpinn (M q(Σ−1grpinn))jj μq(1/aΣgrpinn,j).

where p = 6 is the number of columns in the X matrix, qgrpout = 2 is the dimension of

Σgrpout and qgrpinn = 2 is the dimension of Σgrpinn.

5.3.3 Streamlining mean field variational Bayes for the three-level Gaus-

sian response model

Here we extend the streamlined MFVB algorithm for the two-level Gaussian response

model as shown in Section 5.2.4 to cater to our three-level structured rodent tumor data.

Once again, in keeping with the notation in Lee & Wand (2015) we partition the following

vectors and matrices:

ZR ≡blockdiag
1≤i≤m (ZR

i ) ,
where

ZR
i ≡ [Xi ∣Zgrpout

i ∣ blockdiag
1≤i≤m (Xij Z

grpinn

ij )] .
The global and random effects are partitioned according to:

u ≡ ⎡⎢⎢⎢⎢⎣
ugbl

uR

⎤⎥⎥⎥⎥⎦ , Z ≡ [Zgbl ZR] ,
where

uR ≡
⎡⎢⎢⎢⎢⎢⎢⎣
uR
1⋮

uR
m

⎤⎥⎥⎥⎥⎥⎥⎦
, uR

i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δi

ugrpout

i

γi1

ugrpinn

i1⋮
γini

ugrpinn

ini

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With these partitions in mind, a streamlined version of Algorithm 7 is presented in Algo-

rithm 8. Successive values of the marginal log-likelihood lower bound are used to diagnose

convergence of Algorithm 8. These values are monitored using the expression in (5.22)

where

log ∣Σq(β,u)∣
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Set up initial values:

μq(1/σ2
ε), μq(1/σ2

gbl
), μq(1/σ2

grpout), μq(1/σ2
grpinn), μq(1/aε), μq(1/agbl), μq(1/agrpout),

μq(1/agrpinn) > 0, μ
q(1/aΣgrpout,j

), μq(1/aΣgrpinn,j) > 0, 1 ≤ j ≤ 2, M q(Σ−1grpout),

M q(Σ−1grpinn) positive definite.

Cycle through:

S ← 0; s← 0

For i = 1, . . . ,m:

Gi ← μq(1/σ2
ε) (Cgbl

i )⊺ZR
i

H i ← [μq(1/σ2
ε) (ZR

i )⊺ZR
i + blockdiag{Mq(Σ−1grpout), μq(1/σ2

grpout)ILgrpout ,

Ini ⊗ (M
q(Σ−1grpinn), μq(1/σ2

grpinn)ILgrpinn
)}]−1

S ← S +GiH iG
⊺
i ; s← s +GiH i (ZR

i )⊺ yi

Σq(β,uG) ←
⎧⎪⎪⎨⎪⎪⎩μq(1/σ2

ε) (Cgbl)⊺Cgbl + ⎡⎢⎢⎢⎣
σ−2β I6 0
0 μ

q(1/σ2
gbl
)ILgbl

⎤⎥⎥⎥⎦ −S

⎫⎪⎪⎬⎪⎪⎭
−1

μq(β,uG) ← μq(1/σ2
ε)Σq(β,uG) {(Cgbl)⊺ y − s}

For i = 1, . . . ,m:

Σq(uR
i ) ←H i +H iG

⊺
iΣq(β,uG)GiH i

μq(uR
i ) ←H i {μq(1/σ2

ε) (ZR
i )⊺ yi −G⊺i μq(β,uG)}

Bq(σ2
ε) ← μq(1/aε) + 1

2

⎡⎢⎢⎢⎢⎢⎢⎣

TTTTTTTTTTTTTTTT
y −Cgblμq(β,uG) −

⎡⎢⎢⎢⎢⎢⎣
ZR

1μq(uR
1 )⋮

ZR
mμq(uR

m)

⎤⎥⎥⎥⎥⎥⎦

TTTTTTTTTTTTTTTT

2

+tr{(Cgbl)⊺CgblΣq(β,uG)} + m∑
i=1

tr{(ZR
i )⊺ZR

i Σq(uR
i )}

−2μ−1q(1/σ2
ε)

m∑
i=1

tr (GiH iG
⊺
iΣq(β,uG))]

μq(1/σ2
ε) ← 1

2 (o∑n
i=1 ni + 1) /Bq(σ2

ε); μq(1/aε) ← 1/ {μq(1/σ2
ε) +A−2ε }

B
q(σ2

gbl
) ← 1

2
{∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μq(1/agbl)

μ
q(1/σ2

gbl
) ← 1

2 (Lgbl + 1) /B
q(σ2

gbl
)

Bq(agbl) ← μ
q(1/σ2

gbl
) + (Agbl)−2 ; μq(1/agbl) ← 1/Bq(agbl)

B
q(σ2

grpout) ← 1
2
{∥ μq(ugrpout) ∥2 +tr (Σq(ugrpout))} + μq(1/agrpout)
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μ
q(1/σ2

grpout) ← 1
2 (mLgrpout + 1) /B

q(σ2
grpout)

Bq(agrpout) ← μ
q(1/σ2

grpout) +A−2grpout, μq(1/agrpout) ← 1/Bq(agrpout)

Bq(Σgrpout) ← m∑
i=1

{μq(δi)μ⊺q(δi) +Σq(δi)}
+2νgrpoutdiag(μq(1/aΣgrpout,1

), μq(1/aΣgrpout,2
))

M q(Σ−1grpout) ← (νgrpout +m + 1)B−1q(Σgrpout)
For j = 1,2:

B
q(aΣgrpout,j

) ← νgrpout (M q(Σ−1grpout))jj + 1/A2
Σgrpout,j

μ
q(1/aΣgrpout,j

) ← (νgrpout

2
+ 1)/B

q(aΣgrpout,j
)

B
q(σ2

grpinn) ← 1
2
{∥ μq(ugrpinn) ∥2 +tr (Σq(ugrpinn))} + μq(1/agrpinn)

μ
q(1/σ2

grpinn) ← 1
2 (omLgrpinn + 1) /B

q(σ2
grpinn)

Bq(agrpinn) ← μ
q(1/σ2

grpinn) +A−2grpinn, μq(1/agrpinn) ← 1/Bq(agrpinn)

Bq(Σgrpinn) ←
m∑
i=1

ni∑
j=1

{μq(γij)μ⊺q(γij) +Σq(γij)}
+2νgrpinndiag(μq(1/aΣgrpinn,1), μq(1/aΣgrpinn,2))

M
q(Σ−1grpinn) ← (νgrpinn + m∑

i=1
ni + 1)B−1

q(Σgrpinn)
For j = 1,2:

B
q(aΣgrpinn,j) ← νgrpinn (M q(Σ−1grpinn))jj + 1/A2

Σgrpinn,j

μ
q(1/aΣgrpinn,j) ← (νgrpinn

2
+ 1)/B

q(aΣgrpinn,j)

until the increase in log {p(y; q)} is negligible.

For i = 1, . . . ,m ∶
Λq(β,ugbl,uR

i ) ≡ Eq [{[ β
ugbl ] −μq(β,ugbl)}{uR

i −μq(uR
i )}⊺]

← −Σq(β,ugbl)GiH i

Algorithm 8: Streamlined MFVB algorithm for the three-level Gaussian response model
given in (5.19).
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is replaced by

−m∑
i=1

log ∣μq(1/σ2
ε) (ZR

i )⊺ZR
i + blockdiag{Mq(Σ−1), μq(1/σ2

grpout)ILgrpout ,

Ini ⊗ (M q(Σ−1grpinn), μq(1/σ2
grpinn)ILgrpinn

)} ∣ − log ∣Σq(β,ugbl)∣.
Once again, Algorithm 8 should not be considered a fully streamlined version of Algo-

rithm 7 because of the structure of H i. In addition to incorporating the variance struc-

ture of the spline components for each subject’s curve, there is also the variance struc-

ture associated with the slice specific curves. This is represented in H i as I∑m
i=1 ni

⊗
(M

q(Σ−1grpinn) , μq(1/σ2
grpinn)ILgrpinn

). This block diagonal structure, comprising storage of a

large amount of zeros, is hindering the potential time savings that would be possible given

further research into this area.

5.3.3.1 Results

The three-level model given in (5.19) was fit using the streamlined MFVB algorithm as

shown in Algorithm 8. For fitting this data we set Lgbl = 17, Lgrpout = 12 and Lgrpinn = 9 and

set all hyperparameters to 105. The rstan package was used for performing MCMC with

a burn-in of 1000 and 1000 additional iterations. The MFVB iterations were terminated

when the increase in the corresponding log p (bsc; q) fell bellow 10−8. The MCMC fit took

approximately 18 hours whilst the streamlined MFVB fit took just under 2 hours to run.

Figure 5.8 illustrates the accuracy of the streamlined MFVB approach against the MCMC

benchmark. The parameters being monitored are the quartiles of the curve estimates of the

1st rodent for three of its slice curves. These are represented as f(Qi) + g1(Qi) +h11(Qi),
f(Qi) + g1(Qi) + h12(Qi) and f(Qi) + g1(Qi) + h13(Qi) for i = 1,2,3. The accuracy of

the curve estimates for these parameters are extremely high, especially considering the

complexity of the model.

Figures 5.9 and 5.10 provide illustration of the inference provided by the streamlined

MFVB approach and MCMC for the three-level Gaussian response model. Each of these

two figures represents a rodent with the interior panels corresponding to the slices or

probe locations in which each tumor was scanned. The streamlined MFVB fits are almost

indistinguishable from the MCMC fits for each slice.
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Figure 5.8: Approximate posterior density functions obtained via MCMC and streamlined
MFVB for the quartiles of three specific slice curves from the rodent tumor data-set. MFVB
accuracy scores are displayed.

M934

4T1

Figure 5.9: Slice-specific estimates and pointwise 95 % credible sets for a rodent given
in Figure 5.6. The different colours correspond to the different transducers. The thicker
curve estimates correspond to MCMC and the thinner ones correspond to streamlined
MFVB fitting. The data points for each slice are also plotted.
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M1047

4T1

Figure 5.10: Slice-specific estimates and pointwise 95 % credible sets for a rodent given
in Figure 5.6. The different colours correspond to the different transducers. The thicker
curve estimates correspond to MCMC and the thinner ones correspond to streamlined
MFVB fitting. The data points for each slice are also plotted.

5.3.4 Simulation study

An extensive simulation study was carried out to assess the speed of Algorithm 8 against

that of Algorithm 7. We generated 25 data-sets according to

yijk = f(xijk) + gi(xijk) + hij(xijk) + εijk, 1 ≤ i ≤m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij ,

where the xijk
ind.∼ Uniform(0, 1), εijk ind.∼ N(0, σ2

ε), ugbl

	
ind.∼ N(0, σ2

gbl), δi ind.∼ N(0, Σgrpout),
ugrpout

i	
ind.∼ N(0, σ2

grpout), γij
ind.∼ N(0, Σgrpinn), and ugrpinn

ij	
ind.∼ N(0, σ2

grpinn). The true parame-

ter values were specified as

β0 = 0.2, β1 = 1.8, σ2
ε = 0.02, σ2

gbl = 1.5, Σgrpout =
⎡⎢⎢⎢⎢⎣
0.4 0.1

0.1 0.4

⎤⎥⎥⎥⎥⎦ , σ2
grpout = 0.29,

Σgrpinn =
⎡⎢⎢⎢⎢⎣
0.4 0.15

0.15 0.4

⎤⎥⎥⎥⎥⎦ and σ2
grpinn = 0.17.

The number of subjects between simulation studies was varied, where m ∈ {5,15,25,35},
the within subject curves remained constant at ni = 5, 1 ≤ i ≤ m and the within curve
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sample size remained constant at oij = 10, 1 ≤ i ≤ m, 1 ≤ j ≤ ni. The computations were

performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes of random

access memory). The computation times for each approach are summarised in Table 5.4.

The time savings here will not be as impressive as the time savings given in Table 5.1,

m Näıve Streamlined Ratio

5 28.49 (3.98) 4.34 (0.15) 6.57

15 617.65 (11.37) 44.79 (1.77) 13.79

25 2638.30 (20.81) 177.42 (0.19) 14.87

35 7051.99 (22.47) 455.89 (2.06) 15.47

Table 5.4: Average (standard deviation) run time in seconds for näıve and streamlined
MFVB fitting of the three-level Gaussian response model.

due to the storage issues contained in H i. However, we still notice that the streamlined

approach for the three-level Gaussian response model is significantly faster than the Näıve

approach.

5.4 Discussion

The original aim of this chapter was to develop a fast deterministic approach to MCMC

to shorten estimation time for the two-level and three-level Gaussian response model.

The rodent tumor dataset that was introduced in Section 5.3 led to the consideration of a

possible streamlined approach to MFVB. Meanwhile, research was being conducted by Lee

& Wand (2015) that led to the fully streamlined MFVB algorithm for a similar two-level

Gaussian response model. This led to the incorporation of a variant of this streamlined

algorithm for this chapter. As is evident from the real datasets and simulation studies for

both the two-level and three-level Gaussian response models considered here, MFVB in

general has achieved faster inference, but a streamlined version of MFVB in particular has

achieved even faster inference with little loss in accuracy. The models considered in this

chapter are of reasonably high complexity and further research into a fully streamlined

algorithm for both models would indeed be beneficial.
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5.A Derivation of Algorithm 5

Expressions for μq(β,u) and Σq(β,u)

Firstly, we define

G ≡
⎡⎢⎢⎢⎢⎢⎣
σ2

gblILgbl
0

0 blockdiag
1≤i≤m (Σ , σ2

grpILgrp)
⎤⎥⎥⎥⎥⎥⎦
.

Next, we note that

p(β,u∣rest) ∝ p(y∣β,u, σ2
ε)p(u∣σ2

gbl,Σ, σ2
grp)p(β)

∝ exp{−1
2 (y −Xβ −Zu)⊺ (σ2

εIn)−1 (y −Xβ −Zu)} × exp{−1
2u
⊺G−1u}

× exp(− 1
2σ2

β

∥ β ∥2) .
We next combine the design matrices X and Z to form C = [X ∣Z]. Taking the logarithm

of both sides gives

log p(β,u∣rest)
∝ −1

2

⎛
⎝y −C

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⎞
⎠
⊺
(σ−2ε In)⎛⎝y −C

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⎞
⎠ − 1

2

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

σ−2β Ip 0

0 Ω−1
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
= −1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺ ⎛
⎝C⊺ (σ−2ε In)C + ⎡⎢⎢⎢⎢⎣

σ−2β Ip 0

0 Ω−1
⎤⎥⎥⎥⎥⎦
⎞
⎠
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦ − 2

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺
C⊺ (σ−2ε In)y

⎫⎪⎪⎪⎬⎪⎪⎪⎭+const
where ‘const’ denotes terms not depending on the parameter vector (β,u). Then, taking
expectations with respect to all parameters except (β, u):

log q∗ (β,u) = Eq {log p(β,u∣rest)} + const

= −1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⊺ ⎛
⎝C⊺ (μq(1/σ2

ε)In)C + ⎡⎢⎢⎢⎢⎣
σ−2β Ip 0

0 M q(G−1)

⎤⎥⎥⎥⎥⎦
⎞
⎠
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
−2⎡⎢⎢⎢⎢⎣

β

u

⎤⎥⎥⎥⎥⎦
⊺
C⊺ (μq(1/σ2

ε)In)y
⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ const
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where

M q(G−1) ≡
⎡⎢⎢⎢⎢⎢⎣
μq(1/σ2

gbl
)ILgbl

0

0 blockdiag
1≤i≤m (M q(Σ−1) , μq(1/σ2

grp)ILgrp)
⎤⎥⎥⎥⎥⎥⎦
,

and

M q(X) ≡ Eq(X).

Completing the square from above gives

q∗ ⎛⎝
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⎞
⎠ ∼ N (μq(β,u), Σq(β,u))

where

μq(β,u) = μq(1/σ2
ε)Σq(β,u)C⊺y, and

Σq(β,u) = ⎛
⎝μq(1/σ2

ε)C⊺C + ⎡⎢⎢⎢⎢⎣
σ−2β Ip 0

0 M q(G−1)

⎤⎥⎥⎥⎥⎦
⎞
⎠
−1

where p = 2 is the column length in X.

Expressions for Bq(σ2
ε) and μq(1/σ2

ε)

The full conditional distribution for σ2
ε is given by

p(σ2
ε ∣rest) ∝ p(y∣β,u, σ2

ε)p(σ2
ε ∣aε)

= ∣σ2
εIn∣−1/2exp{−1

2 (y −Xβ −Zu)⊺ (σ2
εIn)−1 (y −Xβ −Zu)}

(σ2
ε)−3/2 exp{−(1/aε) /σ2

ε} + const

Taking the logarithm of both sides gives

log p(σ2
ε ∣rest) = −n

2
log(σ2

ε) − 1

2σ2
ε

∥ y −Xβ −Zu ∥2 −3
2
log(σ2

ε) − (1/aε) /σ2
ε + const

= 1
2(n + 3) log(σ2

ε) − (12 ∥ y −Xβ −Zu ∥2 +1/aε) /σ2
ε + const

Taking expectations:

log q∗(σ2
ε) = Eq {log p(σ2

ε ∣rest)} + const

= 1
2(n + 3) log(σ2

ε) − (12Eq ∥ y −Xβ −Zu ∥2 +μq(1/aε)) /σ2
ε + const
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Using result 1.4.19 it follows that

log q∗(σ2
ε) = 1

2(n + 3) log(σ2
ε) − (12 {∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} + μq(1/aε)) /σ2

ε

+const
This is of the form of an Inverse-Gamma distribution, therefore

q∗(σ2
ε) ∼ Inverse-Gamma (12(n + 1), Bq(σ2

ε)) ,
where

Bq(σ2
ε) = 1

2
{∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} + μq(1/aε)

and using Result 1.4.3, we get

μq(1/σ2
ε) = 1

2(n + 1)/Bq(σ2
ε).

Expressions for Bq(aε), and μq(1/aε)

The full conditional distribution of aε is given by

p(aε ∣ rest) ∝ p(σ2
ε ∣aε)p(aε)

= (1/aε)1/2 exp{−(1/aε)/σ2
ε} × (aε)−12−1 exp{−(1/A2

ε)/aε} + const

Next, taking the logarithm gives

log p(aε ∣ rest) = −2 log(aε) − (σ−2ε +A−2ε ) /aε + const

Taking expectations:

log q∗(aε) = Eq {log p(aε∣rest)} + const

= −2 log(aε) − (μq(1/σ2
ε) +A−2ε ) /aε + const

This is of the form of an Inverse-Gamma distribution, therefore

q∗(aε) ∼ Inverse-Gamma (1, Bq(aε)) ,
where

Bq(aε) = μq(1/σ2
ε) +A−2ε

and using Result 1.4.3, we get

μq(1/aε) = 1/Bq(aε).
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Expressions for B
q(σ2

gbl
), and μ

q(1/σ2
gbl
)

The full conditional distribution of σ2
ε is attained through

p(σ2
gbl ∣ rest) ∝ p(u ∣σ2

gbl, Σ, σ2
grp)p(σ2

gbl ∣agbl)
= ∣G∣−12 exp{−1

2u
⊺G−1u} (σ2

gbl)−12−1 exp{(1/agbl) /σ2
gbl} + const

Taking the logarithm of both sides gives

log p(σ2
gbl∣rest) = −Lgbl

2 log(σ2
gbl) − 3

2 log(σ2
gbl) − 1

σ2
gbl

∥ ugbl ∥2 −(1/agbl)/σ2
gbl + const

= −1
2(Lgbl + 3) log(σ2

gbl) − {1
2 ∥ ugbl ∥2 +1/agbl} /σ2

gbl + const

Taking expectations with respect to all parameters but σ2
gbl, with the help of Result 1.4.17,

we get

log q∗(σ2
gbl) = Eq {log p(σ2

gbl∣rest)}
= −1

2(Lgbl + 3) log(σ2
gbl) − [12 {∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μ(1/agbl)] /σ2

gbl

+const
Thus, we can represent the optimal q-density of σ2

gbl as:

q∗(σ2
gbl) ∼ Inverse-Gamma(1

2(Lgbl + 1), B
q(σ2

gbl
)) ,

where

B
q(σ2

gbl
) = 1

2
{∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} + μ(1/agbl)

and using Result 1.4.3, we get

μ
q(1/σ2

gbl
) = 1

2(Lgbl + 1)/B
q(σ2

gbl
).

Expressions for Bq(agbl) and μq(1/agbl)

The derivations for Bq(agbl) and μq(1/agbl) are similar to that for Bq(σ2
ε) and μq(1/σ2

ε), re-
spectively. Without going into further detail, the optimal q-density for agbl satisfies

q∗(agbl) ∼ Inverse-Gamma (1, Bq(agbl)) ,
where

Bq(agbl) = μq(1/σ2
gbl
) +A−2gbl
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and

μq(1/agbl) = 1/Bq(agbl).

Expressions for Bq(Σ) and M q(Σ−1)

The full conditional distribution for Σ is given by:

p(Σ∣rest) ∝ p(u ∣σ2
gbl, Σ, σ2

grp)p(Σ ∣aΣ,1, aΣ,2)
= ∣G∣−12 exp (−1

2u
⊺G−1u) ∣Σ∣−(ν+p−1)+p+12

× exp [−1
2tr{2ν diag (1/aΣ,1,1/aΣ,2)} Σ−1] + const

where p = 2 is the dimension of Σ. Taking the logarithm of both sides, we get:

log p(Σ ∣ rest) = −m
2 log ∣Σ∣ − 1

2δ
⊺(Im ⊗Σ)δ − ν+4

2 log ∣Σ∣
−tr{2ν diag (1/aΣ,1,1/aΣ,2) Σ−1} + const

where δ = [δ⊺1 , . . . ,δ⊺m]⊺. Further simplification results in

log p(Σ∣rest) = −1
2(ν +m + 4) log ∣Σ∣ − 1

2tr [{∑m
i=1 δiδ⊺i + 2ν diag (1/aΣ,1,1/aΣ,2)}Σ−1]

+const.
Taking expectations:

log q∗(Σ) = Eq {log p(Σ∣rest)}
= −1

2(ν +m + 4) log ∣Σ∣ − 1
2 {[∑m

i=1 {μq(δi)μ⊺q(δi) +Σq(δi)}
+2ν diag (μq(1/aΣ,1), μq(1/aΣ,2))]Σ−1} + const

Therefore, we can represent the optimal q-density of Σ as:

q∗(Σ) ∼ Inverse-Wishart (ν +m + 1, Bq(Σ)) ,
where

Bq(Σ) = m∑
i=1

{μq(δi)μ⊺q(δi) +Σq(δi)} + 2ν diag (μq(1/aΣ,1), μq(1/aΣ,2))
and using Results 1.4.7 and 1.4.8, we get

M q(Σ−1) ≡ Eq(Σ−1) = (ν +m + 1)B−1q(Σ).

Expressions for the Bq(aΣ,j) and μq(1/aΣ,j)
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We start with

p(aΣ,j ∣ rest) ∝ p(Σ ∣aΣ,1, aΣ,2)p(aΣ,j)
= ∣2ν diag (1/aΣ,1,1/aΣ,2) ∣ ν+12 exp{−1

2tr (2ν diag (1/aΣ,1,1/aΣ,2)Σ−1)}
×(aΣ,j)−12−1 exp{−(1/AΣ,j) /aΣ,j} + const

Taking the logarithm of both sides gives

log p(aΣ,j ∣ rest) = −ν+1
2 log(aΣ,j) − 3

2 log(aΣ,j) − (1/AΣ,j) /aΣ,j − {ν (Σ−1)jj} /aΣ,j

+const
= −ν+4

2 log(aΣ,j) − {ν (Σ−1)jj +A−2
Σ,j} /aΣ,j

Taking expectations gives

log q∗(aΣ,j) = Eq {log p(aΣ,j ∣ rest)}
= −ν+4

2 log(aΣ,j) − {ν (M q(Σ−1))jj +A−2
Σ,j}/aΣ,j + const

Therefore,

q∗(aΣ,j) ∼ Inverse-Gamma (ν
2 + 1, Bq(aΣ,j)) , j = 1,2,

where

Bq(aΣ,j) = ν (M q(Σ−1))jj +A−2Σ,j

and through the use of Result 1.4.3

μq(1/aΣ,j) = (ν2 + 1) /Bq(aΣ,j).

Expressions for Bq(σ2
grp) and μq(1/σ2

grp)

The derivations for Bq(σ2
grp) and μq(1/σ2

grp) are similar to that for B
q(σ2

gbl
) and μq(1/σ2

gbl
),

respectively. Without going through further detail, the optimal q-density for σ2
grp is shown

to be of the form:

q∗(σ2
grp) ∼ Inverse-Gamma (1

2(mLgrp + 1), Bq(σ2
grp)) ,

where

Bq(σ2
grp) = 1

2
{∥ μq(ugrp) ∥2 +tr (Σq(ugrp))} + μ(1/agrp)
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and using Result 1.4.3, we get

μq(1/σ2
grp) = 1

2(mLgrp + 1)/Bq(σ2
grp).

5.B Derivation of the marginal log-likelihood lower bound

The marginal log-likelihood lower bound expression given in (5.13) is:

log p(y; q) = 1
2(ν + p − 1) log(2ν) − 1

2

m∑
i=1

ni log(2π) − 4 log(π) − p
2 log(σ2

β)
− 1
σ2
β

{∥ μq(β) ∥2 +tr (Σq(β))} + 1
2 log ∣Σq(β,u)∣

+1
2 {p +Lgbl +m(p +Lgrp)} − log (Cp,ν+p−1) + log (Cp,ν+m+p−1)

−1
2 (ν + p +m − 1) log ∣Bq(Σ)∣ + log Γ{1

2 (
m∑
i=1

ni + 1)}
−1
2 (

m∑
i=1

ni + 1) log (Bq(σ2
ε)) + log Γ{1

2 (Lgbl + 1)}
−1
2 (Lgbl + 1) log (B

q(σ2
gbl
)) + log Γ{1

2 (m ×Lgrp + 1)}
−1
2 (m ×Lgrp + 1) log (Bq(σ2

grp)) − log (Aε) − log (Bq(aε))
+μq(1/σ2

ε)μq(1/aε) − log (Bq(agrp)) +
p∑

j=1
ν (M q(Σ−1))jj μq(1/aΣ,j).

− log (Agbl) − log (Bq(agbl)) + μ
q(1/σ2

gbl
)μq(1/agbl) − log (Agrp)

+μq(1/σ2
grp)μq(1/σ2

grp) −
p∑

j=1
log (AΣ,j) + p log Γ{1

2 (ν + p)}
−1
2 (ν + p − 1) p∑

j=1
log (Bq(aΣ,j))
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The details of the derivation are as follows:

log p (y; q) = Eq {log p(y,β,u, σ2
ε , σ

2
gbl,Σ, σ2

grp, aε, agbl,aΣ, agrp)
− log q∗ (β,u, σ2

ε , σ
2
gbl,Σ, σ2

grp, aε, agbl,aΣ, agrp)}
= Eq {log p (y∣β,u, σ2

ε)}
+Eq {log p (β,u∣σ2

gbl,Σ, σ2
grp) − log q∗ (β,u)}

+Eq {log p (σ2
ε ∣aε) − log q∗ (σ2

ε)}
+Eq {log p (σ2

gbl∣agbl) − log q∗ (σ2
gbl)}

+Eq {log p (Σ∣aΣ,1, aΣ,2) − log q∗ (Σ)}
+Eq {log p (σ2

grp∣agrp) − log q∗ (σ2
grp)}

Eq {log p (aε) − log q∗ (aε)} +Eq {log p (agbl) − log q∗ (agbl)}
Eq {log p (aΣ) − log q∗ (aΣ)} +Eq {log p (agrp) − log q∗ (agrp)} .

(5.23)

First note that

log p (y∣β,u, σ2
ε) = 1

2

m∑
i=1

ni log(2π) − 1
2

m∑
i=1

ni log(σ2
ε) − 1

2σ2
ε
∥ y −Xβ −Zu ∥2

Taking expectations we get

Eq {log p (y∣β,u, σ2
ε)} = −1

2

m∑
i=1

ni log(2π) − 1
2

m∑
i=1

niEq {log(σ2
ε)}

−1
2μq(1/σ2

ε)Eq (∥ y −Xβ −Zu ∥2) . (5.24)

Next, using the concatenated form of the design matrices, C = [X ∣Z] and Results 1.4.19

and 1.4.12, we see that

Eq (∥ y −Xβ −Zu ∥2) = Eq

⎛⎜⎜⎜⎝
TTTTTTTTTTTTTTTT
y −C

⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
TTTTTTTTTTTTTTTT

2⎞⎟⎟⎟⎠
=
TTTTTTTTTTTTTTTT
y −CEq

⎛
⎝
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⎞
⎠
TTTTTTTTTTTTTTTT

2

+ tr

⎧⎪⎪⎨⎪⎪⎩C Cov
⎛
⎝
⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦
⎞
⎠C⊺

⎫⎪⎪⎬⎪⎪⎭
= ∥ y −Cμq(β,u) ∥2 +tr (CΣq(β,u)C⊺)
= ∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u)) .

Substituting into (5.24), we have

Eq {log p (y∣β,u, σ2
ε)} = −1

2

m∑
i=1

ni log(2π) − 1
2

m∑
i=1

niEq {log(σ2
ε)}

−1
2μq(1/σ2

ε) {∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} .
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Moving on to the next term in (5.23), we see that

log p (β,u∣σ2
gbl,Σ, σ2

grp) = − log(2π) − log (σ2
β) − 1

2σ2
β

∥ β ∥2
−1
2 {Lgbl +m(2 +Lgrp)} log(2π) − Lgbl

2 log (σ2
gbl)

−m
2 log ∣Σ∣ − 1

2m ×Lgrp log (σ2
grp) − 1

2σ2
gbl

∥ ugbl ∥2

−1
2tr(

m∑
i=1

δiδ
⊺
iΣ
−1) − 1

2σ2
grp

∥ ugrp ∥2 .
Next, note that the entropy of the multivariate normal random vector [β⊺,u⊺]⊺ is

−Eq {log q∗(β,u)} = 1
2 log {(2πe)2+Lgbl+m(2+Lgrp)∣Σq(β,u)∣}

= 1
2 log ∣Σq(β,u)∣ + 2+Lgbl+m(2+Lgrp)

2 log(2π) + 2+Lgbl+m(2+Lgrp)
2 .

Therefore,

Eq {log p (β,u∣σ2
gbl,Σ, σ2

grp) − log q∗(β,u)}
= − log(2π) − log (σ2

β) − 1
2σ2

β

{∥ μq(β) ∥2 +tr (Σq(β))}
−1
2 {Lgbl +m(2 +Lgrp)} log(2π) − Lgbl

2 Eq {log (σ2
gbl)}

−m
2 Eq {log ∣Σ∣} − 1

2 mLgrp Eq {log (σ2
grp)}

−1
2μq(1/σ2

gbl
) {∥ μq(ugbl) ∥2 +tr (Σq(ugbl))}

−1
2tr{∑m

i=1 (μq(δi)μ⊺q(δi) +Σq(δi))M q(Σ−1)}
−1
2μq(1/σ2

grp) {∥ μq(ugrp) ∥2 +tr (Σq(ugrp))}
+1
2 log ∣Σq(β,u)∣ + 1

2(2 +Lgbl +m(2 +Lgrp)) log(2π)
+1
2(2 +Lgbl +m(2 +Lgrp)).

Collecting like terms and removing cancellations, this equates to

= − log (σ2
β) − 1

2σ2
β

{∥ μq(β) ∥2 +tr (Σq(β))} − Lgbl

2 Eq {log (σ2
gbl)}

−m
2 Eq {log ∣Σ∣} − 1

2 mLgrp Eq {log (σ2
grp)}

−1
2μq(1/σ2

gbl
) {∥ μq(ugbl) ∥2 +tr (Σq(ugbl))}

−1
2tr{∑m

i=1 (μq(δi)μ⊺q(δi) +Σq(δi))M q(Σ−1)}
−1
2μq(1/σ2

grp) {∥ μq(ugrp) ∥2 +tr (Σq(ugrp))}
+1
2 log ∣Σq(β,u)∣ + 1

2(2 +Lgbl +m(2 +Lgrp)).
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Next,

log p(σ2
ε ∣aε) − log q∗(σ2

ε) =
log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1/aε)12
Γ (12) (σ2

ε)−12−1 exp(−1/aεσ2
ε

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

−log
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bq(σ2

ε)
1
2
(∑m

i=1 ni+1)
Γ (12 (∑m

i=1 ni + 1)) (σ2
ε)−12 (∑m

i=1 ni+1)−1
exp(−Bq(σ2

ε)
σ2
ε

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= −1
2 log(aε) − 3

2 log(σ2
ε) − (1/aε) /σ2

ε − 1
2 log(π)

−1
2 (

m∑
i=1

ni + 1) log (Bq(σ2
ε)) + {1

2 (
m∑
i=1

ni + 1) + 1} log(σ2
ε)

+Bq(σ2
ε)/σ2

ε + log {Γ (12 ∑m
i=1 ni + 1)}

Thus,

Eq {log p(σ2
ε ∣aε) − log q∗(σ2

ε)} = −1
2Eq {log(aε)} + 1

2 ∑m
i=1 niEq {log(σ2

ε)}
−1
2 log(π) + (Bq(σ2

ε) − μq(1/aε))μq(1/σ2
ε)

+ log {Γ (12 ∑m
i=1 ni + 1)}

−1
2 (∑m

i=1 ni + 1) log (Bq(σ2
ε)) .

The derivation for the term

Eq {log p(σ2
gbl ∣agbl) − log q∗(σ2

gbl)}
is similar to that for

Eq {log p(σ2
ε ∣aε) − log q∗(σ2

ε)} .
So, without going into further detail,

Eq {log p(σ2
gbl ∣agbl) − log q∗(σ2

gbl)} = −1
2Eq {log(agbl)} + 1

2LgblEq {log(σ2
gbl)}

−1
2 log(π) + (Bq(σ2

gbl
) − μq(1/agbl))μq(1/σ2

gbl
)

+ log {Γ (12Lgbl + 1)}
−1
2 (Lgbl + 1) log (Bq(σ2

gbl
)) .

We now move on to expanding the fifth term in (5.23):

log p(Σ ∣aΣ,1, aΣ,2) − log q∗(Σ) = − log(C2, ν+2−1) + ν+2−1
2 log ∣2ν diag (1/aΣ,1, 1/aΣ,2) ∣

−ν+4
2 log ∣Σ∣ − 1

2tr{2ν diag (1/aΣ,1,1/aΣ,2)Σ−1}
+ log(C2, ν+m+1) − ν+m+1

2 log ∣Bq(Σ)∣ + ν+4+m
2 log ∣Σ∣

+1
2tr{Bq(Σ)Σ−1}
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Therefore,

Eq {log p(Σ ∣aΣ,1, aΣ,2) − log q∗(Σ)} =
− log(C2, ν+1) + log(C2, ν+m+1)
+ν+1

2 Eq {log ∣2ν diag (1/aΣ,1, 1/aΣ,2) ∣}
−ν+m+1

2 log ∣Bq(Σ)∣ + m
2 Eq {log ∣Σ∣}

+1
2tr{(Bq(Σ) − 2ν diag (μq(1/aΣ,1), μq(1/aΣ,2)))M q(Σ−1)} .

The derivation for the term

Eq {log p(σ2
grp ∣agrp) − log q∗(σ2

grp)}
is similar to that for

Eq {log p(σ2
ε ∣aε) − log q∗(σ2

ε)} .
Without going into further detail, it is shown that

Eq {log p(σ2
grp ∣agrp) − log q∗(σ2

grp)} = −1
2Eq {log(agrp)} + 1

2mLgrpEq {log(σ2
grp)}

−1
2 log(π) + (Bq(σ2

grp) − μq(1/agrp))μq(1/σ2
grp)

+ log {Γ (12mLgrp + 1)}
−1
2 (mLgrp + 1) log (Bq(σ2

grp)) .
Next, we have

log p(aε) − log q∗(aε) = log

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1/A2

ε)12
Γ(12) (aε)−12−1 exp(−1/A2

ε

aε
)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−log{Bq(aε)
Γ(1) (aε)−1−1 exp(−Bq(aε)

aε
)}

= − log(Aε) − 1
2 log(π) − 3

2 log(aε) − (1/A2
ε) /aε − log (Bq(aε))

+2 log(aε) +Bq(aε)/aε.
From algorithm 5, we see that

Bq(aε) = μq(1/σ2
ε) +A−2ε ,

so making use of this and taking expectations we get:

Eq {log p(aε) − log q∗(aε)} = − log(Aε) − 1
2 log(π) + 1

2Eq {log(aε)} − log (Bq(aε))
+μq(1/σ2

ε)μq(1/aε)
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The derivation of the following term in (5.23) is similar to that just shown above, thus we

have

Eq {log p(agbl) − log q∗(agbl)} = − log(Agbl) − 1
2 log(π) + 1

2Eq {log(agbl)} − log (Bq(agbl))
+μq(1/σ2

gbl
)μq(1/agbl).

Next,

log p(aΣ) − log q∗(aΣ) = log

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2∏

j=1
(1/A2

Σ,j)12
Γ (12) (aΣ,j)−12−1 exp⎛⎝−

1/A2
Σ,j

aΣ,j

⎞
⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−log
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2∏
j=1

Bq(aΣ,j)
ν
2 + 1

Γ (ν2 + 1) (aΣ,j)−(ν2 + 1)−1
exp(−Bq(aΣ,j)

aΣ,j
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= − 2∑
j=1

log (AΣ,j) − log(π) + 2 log {Γ (ν2 + 1)} + 1
2(ν + 1) 2∑

j=1
log(aΣ,j)

− 2∑
j=1

(1/A2
Σ,j) /aΣ,j + 2∑

j=1
Bq(aΣ,j)/aΣ,j − (ν2 + 1) 2∑

j=1
log (Bq(aΣ,j)).

Using the fact that

Bq(aΣ,j) = ν (M q(Σ−1))jj + 1/A2
Σ,j ,

and taking expectations, we get

Eq {log p(aΣ) − log q∗(aΣ)} = − 2∑
j=1

log (AΣ,j) − log(π) + 2 log {Γ (ν2 + 1)}
+1
2(ν + 1) 2∑

j=1
Eq {log(aΣ,j)}

−(ν2 + 1) 2∑
j=1

log (Bq(aΣ,j))
+ 2∑

j=1
ν (M q(Σ−1))jj μq(1/aΣ,j).

The derivation for the last term in (5.23) is similar to the derivation for the aε parameter.

Thus, the expression is:

Eq {log p(agrp) − log q∗(agrp)} = − log(Agrp) − 1
2 log(π) + 1

2Eq {log(agrp)}
− log (Bq(agrp)) + μq(1/σ2

grp)μq(1/agrp)
Bringing all these terms together, and noting the cancellations:

−1
2μq(1/σ2

ε) {∥ y −Cμq(β,u) ∥2 +tr (C⊺CΣq(β,u))} = (Bq(σ2
ε) − μq(1/aε))μq(1/σ2

ε),
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−1
2μq(1/σ2

gbl
) {∥ μq(ugbl) ∥2 +tr (Σq(ugbl))} = (Bq(σ2

gbl
) − μq(1/agbl))μq(1/σ2

gbl
),

−1
2tr{∑m

i=1 (μq(δi)μ⊺q(δi) +Σq(δi))M q(Σ−1)}
= 1

2tr{(Bq(Σ) − 2ν diag (μq(1/aΣ,1), μq(1/aΣ,2)))M q(Σ−1)} ,
−1
2μq(1/σ2

grp) {∥ μq(ugrp) ∥2 +tr (Σq(ugrp))} = (Bq(σ2
grp) − μq(1/agrp))μq(1/σ2

grp)
and the fact that

ν+1
2 Eq {log ∣2ν diag (1/aΣ,1,1/aΣ,2) ∣} + ν+1

2 ∑2
j=1Eq {log(aΣ,j)} = ν+1

2 log(2ν),
gives the final lower bound expression in (5.13) where p = 2 is the column length in X.
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Chapter 6

Mean field variational Bayes for

mixture models in measurement

error problems

6.1 Introduction

In the area of epidemiology it is generally recognised that covariates, such as risk factors,

are not being measured accurately on all subjects. This can heavily affect the estimate

of the relationship between these covariates and the outcome. These are known as mea-

surement error or errors-in-variables problems. In this chapter we examine the Bayesian

formulation of such a problem, in particular fast mean field variational Bayes approxima-

tion and compare this to the MCMC benchmark. The field of epidemiology has lent great

motivation to this chapter, as measurement error has long been a problem there. The

model we present, inspired by the model used in Richardson et al. (2002), can be applied

in a variety of settings involving measurement error.

The main concern for problems with measurement error is to make inference on the

relationship between a response y and covariates x, in situations where the only other

information we have on x is through the recording of an error contaminated surrogate o,

as x may not have been measured accurately on all subjects. An attempt to regress y on

o whilst ignoring the problem of measurement error can in most cases lead to extremely

inaccurate inferential statistics. An extensive literature has formed for flexible estimation

of regression models where precise measurements on the predictor/s are not available. An
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extensive reference to the area is Carroll et al. (2006). The 2000s in particular saw an

influx of research into the area, e.g. Mallick et al. (2002), Liang et al. (2003), Carroll

et al. (2004), Ganguli et al. (2005) and Carroll et al. (2007). Many contributions have

discussed the use of MCMC based inference to fitting models impaired by measurement

error, however inference based on MCMC can at times be extremely time intensive. As

an alternative to MCMC, we focus on MFVB fitting to the model structure given in

Richardson et al. (2002) where the response follows a normal distribution.

Section 6.2 discusses the different components necessary for the measurement error

model with normal mixture components. In Section 6.3 we present the full measurement

error model that we deal with. We present the MFVB algorithm in Section 6.4 and Section

6.5 provides a simulation study based on the new MFVB algorithm. The appendices

provide details on the calculations required for the MFVB algorithm and corresponding

lower bound expression.

6.2 Model structure

We set up the covariate of interest x by splitting it up into two subgroups: xobs which

involves the accurate measurements of the covariate; and xunobs which involves the part of

the covariate that has not been measured accurately. The observations in xobs are generally

recorded using a gold standard method, which is an error-free method for measuring the

covariate, however this is costly to use on a large scale, hence xunobs is usually much

larger than xobs. The subjects belonging to xobs are usually referred to as the validation

group, and the subjects belonging to xunobs as the main study. This is in keeping with the

terminology used in Richardson et al. (2002).

Throughout this chapter we let i refer to a particular individual, where 1 ≤ i ≤ n.

Also y denotes the known outcome (e.g. disease status), x the true covariate comprising

observed quantities xobs and unobserved quantities xunobs, o the observed surrogate for x

and c denotes a known covariate. We focus on the case where x and o are univariate. The

general model is divided into three submodels:

1. a regression model expressing the relationship between the covariates c and x and

the outcome y, denoted by p(y∣x,β);
2. a measurement model, which expresses the relationship between the surrogate mea-
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sures o and the true unknown covariate x, denoted by p(o∣x,α); and
3. the prior model for x, which specifies the distribution of the unknown covariate x

in the general population and is denoted by p(x ∣θ),
where β is the regression coefficient vector for y, α is the regression coefficient vector for

o and θ are the parameters in the prior model for x.

6.2.1 Nondifferential measurement error

An important assumption for our model is one of nondifferential measurement error which

holds when o has no information about y other than what is given in x and c. Thus,

if o is conditionally independent of y given x and c, then it is a surrogate. This can be

expressed as

p(y ∣o, x, c, β) = p(y ∣x, c, β) or y ⊥ o ∣x.
This leads to the joint distribution

p(θ,α,β,x,o,y) = p(θ)p(α)p(β) n∏
i=1

p(xi ∣θ) n∏
i=1

p(oi ∣xi, α) n∏
i=1

p(yi ∣xi, ci, β), (6.1)

where θ denotes all the parameters of the normal mixture model and p(β), p(α) and p(θ)
are the prior distributions for the parameters in the three submodels.

6.2.2 Finite normal mixture component

A question that has been heavily researched in the last decade is that of how to model

p(x ∣θ) in such that we allow the data to influence its shape, since regression parameters

are known to be susceptible to the particular shape of p(x ∣θ). Many contributions have

been made to this particular question in the measurement error context, some of which

are described in Carroll et al. (1993), Roeder et al. (1996), Schafer (2001), Aitkin & Rocci

(2002) and Müller & Roeder (1997). Richardson et al. (2002) however, suggest mixture

models with alterable number of components as a natural alternative. In particular, mix-

tures of normal distributions, as they make model misspecification for p(x ∣θ) increasingly
more robust. Thus, we also impose a mixture of normal distributions on p(x ∣θ) of the

form:

p(xi ∣axi1, ⋯, axiK) = K∏
k=1

[(2πσ2
k)−1/2 exp{−1

2(xi − μk)2/σ2
k}]axik ,

(axi1, ⋯, axiK)∣(ω1, ⋯, ωK) ind.∼ Multinomial(1; ω1, ⋯, ωK), 1 ≤ i ≤ n,

(6.2)
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where the aik are auxiliary variables introduced to make the mixture model tractable and

K refers to the number of mixture components used. An example of this use of auxiliary

variables can be found in Section 2.2.4 of Ormerod &Wand (2010). The prior distributions

have the following forms:

μk
ind.∼ N (μμk

, σ2
μk
) , σk

ind.∼ Half-Cauchy (Ak) , 1 ≤ k ≤K,

(ω1, ⋯, ωK) ∼ Dirichlet(α,⋯, α), α > 0,
(6.3)

where according to this notation, ∑K
k=1 axik = 1, indicating which mixture component the

current observation belongs to, and ωk = P (axik = 1).
6.2.3 Joint model

Bringing the distributions in (6.1), (6.2) and (6.3) together and assuming natural condi-

tional independencies, our joint model for the measurement error problem is expressed

as

n∏
i=1

{p(yi ∣xi, ci, β)} n∏
i=1

{p(oi ∣xi, α)} n∏
i=1

K∏
k=1

{p(xi ∣aik, μk, σ
2
k)}

× n∏
i=1

{p(axi1,⋯, axik)}p(ω1,⋯, ωK) K∏
k=1

{p(μk)p(σk)}p(β)p(α).
The model components discussed in the previous sections are brought together next to

present the full model, considered in a measurement error setting.
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6.3 The full model

We consider the model given in (6.4) which exploits the structure described in Section 6.2.

yi ∣xi, β, σ2
ε

ind.∼ N{(Xβ)i , σ2
ε} , σ2

ε ∣aε ∼ Inverse-Gamma (12 , 1/aε) ,
aε ∼ Inverse-Gamma (12 , 1/A2

ε) ,
β ∼ N (0, σ2

βIp) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
regression

model

oi ∣xi, α, σ2
o

ind.∼ N{(X̃ α)
i
, σ2

o} , α ∼ N (0, σ2
α Iq) ,

σ2
o ∣ao ∼ Inverse-Gamma (12 , 1/ao) , ao ∼ Inverse-Gamma (12 , 1/A2

o) ,
⎫⎪⎪⎪⎬⎪⎪⎪⎭
measurement

error

model

xi ∣ai, μ
x, (σx)2 = K∏

k=1
[{2π (σx

k)2}−1/2 exp{−1
2(xi − μx

k)2/ (σx
k)2}]aik ,

ai1,⋯, aiK ∼Multinomial (1; ω1,⋯, ωK) , ω1,⋯, ωK ∼ Dirichlet (α,⋯, α) ,
μx
k ∼ N (μμ, σ

2
μ) , (σx

k)2 ∣axk ∼ Inverse-Gamma (12 , 1/axk) ,
axk ∼ Inverse-Gamma (1

2 , 1/(Ax
k)2) , 1 ≤ k ≤K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

prior

specification

(6.4)

where a is an n × K matrix of auxiliary variables and ai is the ith column of a with

entries ai1, . . . , aiK . In addition, μx ≡ (μx
1 , . . . , μ

x
K) and (σx)2 ≡ {(σx

1)2 , . . . , (σx
K)2}. We

also define

β ≡
⎡⎢⎢⎢⎢⎢⎢⎣
β0

βc

βx

⎤⎥⎥⎥⎥⎥⎥⎦
, α ≡ ⎡⎢⎢⎢⎢⎣

α0

α1

⎤⎥⎥⎥⎥⎦ , X ≡
⎡⎢⎢⎢⎢⎢⎢⎣
1 c1 x1⋮ ⋮ ⋮
1 cn xn

⎤⎥⎥⎥⎥⎥⎥⎦
, X̃ ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 x1⋮ ⋮
1 xn

⎤⎥⎥⎥⎥⎥⎥⎦
.

Here y = (y1,⋯, yn) is an n × 1 vector of response variables, β and α are the p × 1 and

q × 1 vectors of fixed effects, where p = 3 and q = 2, X and X̃ are corresponding design

matrices. Also, σ2
ε and σ2

o are the variance parameters corresponding to the fixed effects

vector and aε and ao are the corresponding auxiliary variables as represented in Result

1.4.6. The variables in the prior specification of (6.4) are as described in Section 6.2.2.

We define the following additional notation which is useful for the remaining sections of

this chapter. Let nobs denote the number of observed xi measurements and nunobs denote

the number of unobserved xi measurements. We define xobs to be the nobs × 1 vector

containing the observed xi measurements and xunobs to be the nunobs × 1 vector containing

the unobserved xi measurements. In addition, let yxobs and yxunobs be the nobs × 1 and

nunobs × 1 vectors corresponding to the measurements in xobs and xunobs. cxobs, and cxunobs
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ω

a

ax

(σx )
2

μx

xunobs
xobs

α σ2
o

β

y

ox unobs ox obs ao

aε

σ2
ε

Figure 6.1: DAG corresponding to the model in (6.4). The shaded nodes correspond to
observed data and the open nodes correspond to hidden or latent variables.

are defined similarly. It is easier to work with a re-ordered set of variables, that is

y ≡ ⎡⎢⎢⎢⎢⎣
yxobs

yxunobs

⎤⎥⎥⎥⎥⎦ , c ≡ ⎡⎢⎢⎢⎢⎣
cxobs

cxunobs

⎤⎥⎥⎥⎥⎦ , and x ≡ ⎡⎢⎢⎢⎢⎣
xobs

xunobs

⎤⎥⎥⎥⎥⎦ .
The conditional dependence structure of (6.4) can be visualised in the DAG given in

Figure 6.1. This DAG illustrates the relationship between the regression parameters and

the unobserved parameters in (6.4). Lastly, we note that the known covariate vector c is

omitted from the DAG since it does not require inference.

6.4 Mean field variational Bayes

We provide detail on MFVB fitting catered to the Normal response regression model

setting with measurement error as described in model (6.4). The assumption behind

MFVB is that we impose a product restriction on the joint posterior distribution of our
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model parameters. For instance, we may impose the product factorisation

p{xunobs, β, α, μx, ax, a, ω, aε, ao, σ
2
ε , σ

2
o , (σx)2 ∣y, xobs, o}

≈ q {xunobs, β, α, μx, ax, a, ω, aε, ao, σ
2
ε , σ

2
o , (σx)2}

= q(xunobs, β, α, μx, ax, a, ω, aε, ao) q {σ2
ε , σ

2
o , (σx)2} .

(6.5)

Using the concept of moralisation (see Definition 1.8.9) we can further reduce the product

restriction in (6.5) to have the form

q(xunobs) q(β) q(α) { K∏
k=1

q(μx
k ) q(axk )} { n∏

i=1
q(ai1, . . . , aiK)} q(ω1, . . . , ωK)

× q(aε) q(ao) q(σ2
ε) q(σ2

o) [ K∏
k=1

q {(σx
k )2}] .

(6.6)

In Appendix 6.B, we show that the optimal q-densities for the parameters in (6.6) are:

q∗(xunobs) is the N (μq(xunobs), σ2
q(xunobs)Inunobs

) density function,

q∗(β) is the N (μq(β), Σq(β)) density function,

q∗(α) is the N (μq(α), Σq(α)) density function,

q∗(μx) ≡ K∏
k=1

q(μx
k) is the product of N (μq(μx

k
), σ2

q(μx
k
)) density functions,

q∗(ax) ≡ K∏
k=1

q(axk) is the product of Inverse-Gamma (1, Bq(ax
k
)) density functions,

q∗(a) ≡ n∏
i=1

q(ai1, . . . , aiK) is the product of Multinomial (1, μq(ai1), . . . , μq(aiK))
density functions,

q∗(ω1, . . . , ωK) is the Dirichlet (αq(ω1), . . . , αq(ωK)) density function,

q∗(aε) is the Inverse-Gamma (1, Bq(aε)) density function,

q∗(ao) is the Inverse-Gamma (1, Bq(ao)) density function,

q∗(σ2
ε) is the Inverse-Gamma (12(n + 1), Bq(σ2

ε)) density function,

q∗(σ2
o) is the Inverse-Gamma (12(n + 1), Bq(σ2

o)) density function and

q∗ {(σx)2} ≡ q∗ {(σx
k)2 , . . . , (σx

k)2} is the product of

Inverse-Gamma(A{(σx
k
)2}, B{(σx

k
)2}) density functions.

The optimal parameters in these q-densities possess interdependencies between each other,

resulting in an iterative scheme for their solution. This is encompassed in Algorithm 9.

The lower bound on the marginal log-likelihood for model (6.4) is given by (the derivation
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of which is given in Appendix 6.C):

log p(y; q) =
−1
2 (K + 5) log(π) + 1

2 (p + q +K + nunobs) − p
2 log (σ2

β) + 1
2 log ∣Σq(β)∣

− log (Aε) − 1
2 (2n + nunobs + K∑

k=1
n∑
i=1

μq(aik)) log (2π) + 1
2 log ∣Σq(α)∣

− 1
2σ2

β

{∥μq(β)∥2 + tr (Σq(β))} + log Γ{1
2 (n + 1)} − q

2 log (σ2
α)

−1
2 (n + 1) log (Bq(σ2

ε)) − log (Bq(aε)) + μq(1/σ2
ε)μq(1/aε) − log (Ao)

− 1
2σ2

α
{∥μq(α)∥2 + tr (Σq(α))} − K∑

k=1
log (Ax

k) + log Γ{1
2 (n + 1)}

−K
2 log (σ2

μ) − 1
2 (n + 1) log (Bq(σ2

o)) − log (Bq(ao)) + μq(1/σ2
o)μq(1/ao)

+nunobs

2 log (σ2
q(xunobs)) − 1

2σ2
μ

K∑
k=1

{(μq(μx
k
) − μμ)2 + σ2

q(μx
k
)} + 1

2

K∑
k=1

log (σ2
q(μx

k
))

+ K∑
k=1

log Γ{1
2
(μq(a●k) + 1)} − 1

2

K∑
k=1

(μq(a●k) + 1) log (B
q{(σx

k
)2})

+ K∑
k=1

μ
q{1/(σx

k
)2}μq(1/ax

k
) − n∑

i=1
K∑
k=1

log (μq(aik))μq(aik) − log Γ( K∑
k=1

αq(ωk))
+ log Γ( K∑

k=1
αk) − K∑

k=1
log Γ (αk) + K∑

k=1
log Γ (αq(ωk)) −

K∑
k=1

log (Bq(ax
k
)) .

(6.7)

6.5 Simulation study

We conducted a simulation study for the measurement error model given in (6.4), where

each ith response measurement takes on a Normal distribution and we make use of a

normal mixture model with K = 2 mixture components for the prior model on x. The

true parameter values were specified as

β0 = −0.18, βc = 0.44, βx = 0.79, σ2
ε = 0.2, αo = 0.24, α1 = 0.83, σ2

o = 0.33,

ω1 = 0.25, ω2 = 0.75, μx
1 = −1.3, μx

2 = 1.25, (σx
1)2 = 0.45, (σx

2)2 = 0.45,

and the proportion of observed x’s, pobs, was varied using pobs ∈ {0.3,0.5,0.7,0.9}. We

generated 25 datasets for each of these settings. Algorithm 9 was implemented in the R

programming language and MCMC was used through the BUGS inference engine. These

computations were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16

GBytes of random access memory). Figure 6.2 shows MFVB accuracy summaries for

different types of pobs values. The parameters that are monitored are σ2
ε , σ2

o and the
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Set up initial values:

μq(1/σ2
o), μq(1/ao), μq(a●k), μq(1/(σx

k
)2), μq(μx

k
), σ2

q(μx
k
), αq(ωk), Aq((σx

k
)2), Aq((σx

k
)2) > 0,

μq(1/σ2
ε), μq(1/aε) > 0.

Cycle through:

Update the expectations given in Appendix 6.A.

Regression model updates:

Σq(β) ← {μq(1/σ2
ε)Eq(xunobs) (X⊺X) + 1

σ2
β

Ip}−1

μq(β) ← μq(1/σ2
ε)Σq(β)Eq(xunobs) (X)⊺ y

Bq(σ2
ε) ← 1

2
(∥yxobs

−Xxobsμq(β)∥2 + tr (X⊺xobsXxobsΣq(β)) + ∥yxunobs
∥2

−2y⊺xunobs
Eq(xunobs) (Xxunobs) μq(β)

+tr [Eq(xunobs) (X⊺xunobsXxunobs) (Σq(β) +μq(β)μ⊺q(β))]) + μq(1/aε)
μq(1/σ2

ε) ← 1
2 (n + 1) /Bq(σ2

ε); Bq(aε) ← μq(1/σ2
ε) +A−2ε ; μq(1/aε) ← 1/Bq(aε)

Measurement model updates:

Σq(α) ← {μq(1/σ2
o)Eq(xunobs) (X̃⊺X̃) + 1

σ2
α
Iq}−1

μq(α) ← μq(1/σ2
o)Σq(α)Eq(xunobs) (X̃)⊺ o

Bq(σ2
o) ← 1

2
(∥oxobs

− X̃xobsμq(α)∥2 + tr (X̃⊺xobsX̃xobsΣq(α)) + ∥oxunobs
∥2

−2o⊺xunobs
Eq(xunobs) (X̃xunobs) μq(α)

+tr [Eq(xunobs) (X̃⊺xunobsX̃xunobs) (Σq(α) +μq(α)μ⊺q(α))]) + μq(1/ao)
μq(1/σ2

o) ← 1
2 (n + 1) /Bq(σ2

o); Bq(ao) ← μq(1/σ2
o) +A−2o ; μq(1/ao) ← 1/Bq(ao)

Prior specification updates:

σ2
q(xunobs) ← 1/(μq(1/σ2

ε) [{(μq(β))3}2 + (Σq(β))33] +∑K
k=1 μq(a⋅k)μq(1/(σx

k
)2)

+μq(1/σ2
o) [{(μq(α))2}2 + (Σq(α))22])
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μq(xunobs) ← σ2
q(xunobs) (μq(1/σ2

ε) [(μq(β))3 yxunobs

−1nunobs
{(μq(β))1 + (μq(β))3 + (Σq(β))13}

−cxunobs
{(μq(β))2 + (μq(β))3 + (Σq(β))23}

+1nunobs ∑K
k=1 μq(a⋅k)μq(μx

k
)μq(1/(σx

k
)2)

+μq(1/σ2
o) [(μq(α))1 oxunobs

− 1nunobs
{(μq(α))1 + (μq(α))2

+(Σq(α))12}]]) ,
For i = 1,⋯, n and k = 1,⋯,K:

νik ← ψ (αq(ωk)) + 1
2ψ (A

q((σx
k
)2)) − 1

2 log (Bq((σx
k
)2))

−1
2μq(1/(σx

k
)2) ([{Eq(xunobs) (x)}i − μq(μx

k
)]2 + {σ2

q(xunobs) (x)}i + σ2
q(μx

k
))

For i = 1,⋯, n and k = 1,⋯,K: μq(aik) ← exp (νik) /∑K
k=1 exp (νik)

For k = 1,⋯,K:

μq(a●k) ←
n∑
i=1

μq(aik); σ2
q(μx

k
) ← 1/{μ

q(1/(σx
k
)2)μq(a●k) + 1/σ2

μ}
μq(μx

k
) ← σ2

q(μx
k
) {μq(1/(σx

k
)2)μq(a●k)

n∑
i=1

{Eq(xunobs) (x)}i + μμ/σ2
μ}

αq(ωk) ← μq(a●k) + α; A
q((σx

k
)2) ← 1

2
(μq(a●k) + 1)

B
q((σx

k
)2) ← 1

2μq(a●k)
n∑
i=1

([{Eq(xunobs) (x)}i − μq(μx
k
)]2 + {σ2

q(xunobs) (x)}i + σ2
q(μx

k
))

+μq(1/ax
k
)

μ
q(1/(σx

k
)2) ← A

q((σx
k
)2)/Bq((σx

k
)2); Bq(ax

k
) ← μ

q(1/(σx
k
)2) + (Ax

k)−2
μq(1/ax

k
) ← 1/Bq(ax

k
)

until the increase in log p(y; q) is negligible.

Algorithm 9: MFVB algorithm for obtaining the parameters in the optimal q densities for
the normal response measurement error model (6.4).

165



6.5. SIMULATION STUDY

pobs = 0.9

ac
cu

ra
cy

20

40

60

80

100

σε
2 σo

2 xunobs
Q1 xunobs

Q2 xunobs
Q3

o

o

oo

oo

pobs = 0.7

ac
cu

ra
cy

20

40

60

80

100

σε
2 σo

2 xunobs
Q1 xunobs

Q2 xunobs
Q3

o

oo

o

o
o o

o

o

o

pobs = 0.5

ac
cu

ra
cy

20

40

60

80

100

σε
2 σo

2 xunobs
Q1 xunobs

Q2 xunobs
Q3

o o o

o

o

pobs = 0.3

ac
cu

ra
cy

20

40

60

80

100

σε
2 σo

2 xunobs
Q1 xunobs

Q2 xunobs
Q3

o

o

o

o

o

o

Figure 6.2: Boxplots of parameter accuracies for MFVB in Algorithm 9 applied to the
measurement error model given in (6.4) for the simulation setting described in Section
6.5.
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quartiles of the unobserved x’s. These are represented as xQi
unobs, i = 1,2,3. We can see

from Figure 6.2 that the accuracies seem to be quite good for σ2
o and the quartiles of xunobs

for all values of pobs except for pobs = 0.3. However, accuracies are very poor for σ2
ε when

pobs = 0.3. Overall, the accuracies are looking good when pobs ∈ {0.5,0.7,0.9}.
We also assessed the 95 % credible interval coverage achieved by the MFVB optimal

q-densities against the true parameter coverage for the same parameters. From Table 6.1

we see that the coverage probabilities are generally high for all parameters except σ2
ε and

σ2
o . As pobs decreases, so do the coverage probabilities for σ2

ε and σ2
o . The run time for

pobs 0.9 0.7 0.5 0.3

σ2
ε 92 96 76 68

σ2
o 92 88 84 72

xQ1
unobs 96 84 96 84

xQ2
unobs 96 92 100 100

xQ3
unobs 92 96 100 92

Table 6.1: 95% credible interval coverage probabilities for the MFVB approximation applied
to (6.4).

pobs 0.9 0.7 0.5 0.3

MCMC 51.80 (0.61) 55.69 (0.51) 54.46 (1.70) 59.80 (0.67)

MFVB 1.46 (0.10) 1.46 (0.11) 1.42 (0.03) 1.41 (0.04)

Ratio 35.48 38.17 38.44 42.46

Table 6.2: Average (standard deviation) run time in seconds for MFVB and MCMC fitting
of the Gaussian response measurement error model.

MCMC and MFVB was also assessed. The resulting times are given in table 6.2. Based on

the timing results, we see that MFVB is approximately 40 times faster than MCMC. The

time savings afforded by MFVB in this instance is not of a large magnitude compared with

other models considered in this thesis, however extension to arbitrarily large and complex

models involving measurement error would more clearly represent the time benefits of

using MFVB as an alternative to MCMC.

From Figure 6.3 we can see that the means of the MFVB fits are agreeing well to

the fits obtained via MCMC. More importantly, both of these fits are agreeing with the

true mean function even when pobs = 0.3. Thus, overall this simulation study has repre-

sented the effectiveness of using MFVB as an alternative to MCMC in models impaired
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Figure 6.3: Comparative plots of the MFVB and MCMC mean fitted functions with cor-
responding 95% credible sets for a single replication of the simulation study. The orange
data points represent the observed data and the blue data points represent the unobserved
data.
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6.6. DISCUSSION

by measurement error.

6.6 Discussion

We have derived a fast MFVB algorithm to a regression model with classical measurement

error. This approach was shown to have good accuracy with evidence of time saving

compared to the MCMC approach. Even though the time comparisons weren’t of high

magnitude for MFVB compared to MCMC, extension of such methodology to arbitrarily

large and complex models involving measurement error would exhibit larger time savings.
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6.A. EXPECTATION UPDATES

6.A Expectation updates

This section lists the updates in Algorithm 9 that involve the expectation operator with

respect to xunobs:

Eq(xunobs)(x) ←
⎡⎢⎢⎢⎢⎣

xobs

μq(xunobs)

⎤⎥⎥⎥⎥⎦ ,
Eq(xunobs) (x⊺x) ← ∥ xobs ∥2 + ∥ μq(xunobs) ∥2 +∑nunobs

i=1 σ2
q(xunobs),

Eq(xunobs) (X̃) ← ⎡⎢⎢⎢⎢⎣
1 xobs

1 μq(xunobs)

⎤⎥⎥⎥⎥⎦ ,

Eq(X̃⊺X̃) (X̃⊺X̃) ← ⎡⎢⎢⎢⎢⎣
n 1⊺xobs + 1⊺μq(xunobs)

1⊺μq(xunobs) Eq(xunobs) (x⊺x)
⎤⎥⎥⎥⎥⎦ ,

Eq(xunobs) (X̃xunobs
) ← [ 1 μ(xunobs) ] ,

Eq(xunobs) (X̃⊺xunobs
X̃xunobs

) ← ⎡⎢⎢⎢⎢⎣
nunobs 1⊺μq(xunobs)

1⊺μq(xunobs) ∥ μq(xunobs) ∥2 +∑nunobs
i=1 σ2

q(xunobs)

⎤⎥⎥⎥⎥⎦ ,

Eq(xunobs) (X) ← ⎡⎢⎢⎢⎢⎣
1 cxobs xobs

1 cxunobs μq(xunobs)

⎤⎥⎥⎥⎥⎦ ,

Eq(xunobs) (X⊺X) ←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n 1⊺c
1⊺c c⊺c

1⊺xobs + 1⊺μq(xunobs) c⊺xobsxobs + c⊺xunobsμq(xunobs)
1⊺xobs + 1⊺μq(xunobs)

c⊺xobsxobs + c⊺xunobsμq(xunobs)
Eq(xunobs) (x⊺x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Eq(xunobs) (Xxunobs) ← [ 1 cxunobs μq(xunobs) ] ,

Eq(xunobs) (X⊺xunobsXxunobs) ←
⎡⎢⎢⎢⎢⎢⎢⎣

nunobs 1⊺cxunobs

1⊺cxunobs ∥ cxunobs ∥2
1⊺μq(xunobs) c⊺xunobsμq(xunobs)

1⊺μq(xunobs)
c⊺xunobsμq(xunobs)∥ μq(xunobs) ∥2 +∑nunobs

i=1 σ2
q(xunobs)

⎤⎥⎥⎥⎥⎥⎥⎦
.
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6.B. DERIVATION OF ALGORITHM 9

Also,

σ2
q(xunobs)(x) ≡

⎡⎢⎢⎢⎢⎣
0nobs

σ2
q(xunobs)1nunobs

⎤⎥⎥⎥⎥⎦ ,
where 0nobs

is the nobs × 1 column vector with all entries equal to 0.

6.B Derivation of Algorithm 9

Expressions for μq(β) and Σq(β)

First note that

p(β ∣ rest) ∝ p(y ∣β, x, σ2
ε) p(β)

= exp{− 1
2σ2

ε
∥y −Xβ∥2 − 1

2σ2
β

∥β∥2} + const,

where ‘const’ denotes all terms not depending on β. Taking the logarithm of both sides

gives

log p(β ∣ rest) ∝ − 1
2σ2

ε
∥ y −Xβ ∥2 − 1

2σ2
β

∥β∥2
∝ − 1

2σ2
ε
(β⊺X⊺Xβ − 2β⊺X⊺y) − 1

2σ2
β

∥β∥2
= −1

2 {β⊺ ( 1
σ2
ε
X⊺X + 1

σ2
β

I3)β − 2β⊺ ( 1
σ2
ε
X⊺y)} + const.

Taking expectations with respect to all parameters except β, we get

log q∗(β) = Eq {log p(β ∣ rest)} + const.

= −1
2 {β⊺ (μq(1/σ2

ε)Eq(xunobs) (X⊺X) + 1/σ2
βI3)β

−2β⊺ (μq(1/σ2
ε)Eq(xunobs) (X)⊺ y)} + const.

Therefore,

q∗ (β) is the N (μq(β), Σq(β)) density function,

where

μq(β) = μq(1/σ2
ε)Σq(β)Eq(xunobs) (X)⊺ y, and

Σq(β) = ⎛
⎝μq(1/σ2

ε) Eq(xunobs) (X⊺X) + 1

σ2
β

I3
⎞
⎠
−1

.

Expressions for Bq(σ2
ε) and μq(1/σ2

ε)
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6.B. DERIVATION OF ALGORITHM 9

p (σ2
ε ∣rest) ∝ p (y ∣ β, x, σ2

ε) p (σ2
ε ∣ aε)

= ∣σ2
εIn∣−12 exp{− 1

2σ2
ε
∥y −Xβ∥2}(σ2

ε)−12−1 exp{−(1/aε)/σ2
ε} + const.

Taking the logarithm of both sides gives

log p (σ2
ε ∣rest) = −n

2 log (σ2
ε) − 1

2σ2
ε
∥ y −X β ∥2 −3

2 log (σ2
ε) − (1/aε) /σ2

ε+const.
= −{1

2 (n + 1) + 1} log (σ2
ε) − (12 ∥ y −X β ∥2 +1/aε) /σ2

ε + const.

Taking expectations with respect to all parameters except σ2
ε , we get

log q∗(σ2
ε) = Eq {log q∗ (σ2

ε ∣ rest)} + const.

= −{1
2 (n + 1) + 1} log (σ2

ε) − (12Eq∥y −X β∥2 +μq(1/aε)) /σ2
ε

+const.
Now, breaking Eq∥y −X β∥2 up into the observed and unobserved parts, we get

Eq∥y −X β∥2 = Eq∥yxobs −Xxobs β∥2 +Eq∥yxunobs −Xxunobs β∥2.
Using Result 1.4.19,

Eq∥y −X β∥2 = ∥yxobs −Xxobs μq(β)∥2 + tr (X⊺xobsXxobsΣq(β))
+∥yxunobs −Eq(xunobs) (Xxunobs) μq(β)∥2 + tr{Covq (Xxunobsβ)}

where, using Result 1.4.20,

Covq (Xxunobs β) = Eq {Covq (Xxunobs β ∣xunobs)} +Covq {Eq (Xxunobs β ∣xunobs)}
= Eq {XxunobsCovq (β ∣xunobs)X⊺xunobs} +Covq {XxunobsEq (β ∣xunobs)}

Taking into account the independence between xunobs and β, as shown in product restric-

tion (6.6), this gives

Covq (Xxunobs β) = Eq {XxunobsCovq (β)X⊺xunobs} +Covq {XxunobsEq (β)}
= Eq (XxunobsΣq(β)X⊺xunobs) +Covq (Xxunobsμq(β))
= Eq (XxunobsΣq(β)X⊺xunobs) +Eq (Xxunobsμq(β)μ⊺q(β)X⊺xunobs)

−{Eq(xunobs) (Xxunobs)μq(β)}{Eq(xunobs) (Xxunobs)μq(β)}⊺
= Eq(xunobs) (X⊺xunobsXxunobs) (Σq(β) +μq(β)μ⊺q(β))

−{Eq(xunobs) (Xxunobs)μq(β)}{Eq(xunobs) (Xxunobs)μq(β)}⊺ .
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Therefore,

Eq∥y −X β∥2 = ∥yxobs −Xxobs μq(β)∥2 + tr (X⊺xobsXxobsΣq(β))
+∥yxunobs∥2 − 2y⊺xunobsEq(xunobs) (Xxunobs)μq(β)
+tr [Eq(xunobs) (X⊺xunobsXxunobs) (Σq(β) +μq(β)μ⊺q(β))] .

And so,

q∗ (σ2
ε) follows an Inverse-Gamma (12 (n + 1) , Bq(σ2

ε)) distribution,

where

Bq(σ2
ε) = 1

2Eq ∥ y −X β ∥2 +μq(1/aε).

Expressions for Bq(aε) and μq(1/aε)

We begin with

p (aε ∣ rest) ∝ p (σ2
ε ∣ aε) p (aε)

= (1/aε)1/2 exp{−(1/aε) /σ2
ε} (aε)−12−1 exp{−(1/A2

ε/aε)} + const.

Taking the logarithm of both sides, gives

log p (aε ∣ rest) = −1
2 log(aε) − (1/aε) /σ2

ε − 3
2 log (aε) − (1/A2

ε) /aε + const

= −2 log(aε) − (σ−2ε +A−2ε ) /aε + const.

Taking expectations, we get

log q∗ (aε) = Eq {log p (aε ∣ rest)} + const

= −2 log(aε) − (μq(1/σ2
ε) +A−2ε ) /aε + const.

Therefore,

q∗ (aε) is the Inverse-Gamma (1, Bq(aε)) density function,

where

Bq(aε) = μq(1/σ2
ε) +A−2ε .

In addition, using Result 1.4.3,

μq(1/aε) = 1/Bq(aε).
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Expressions for μq(xunobs) and σ2
q(xunobs)

We first note that

p (xunobs ∣ rest) ∝ p (y ∣ β, x, σ2
ε) p (x ∣ a, μ, σ2) p (o ∣ x, α, σ2

o)
= exp{− 1

2σ2
ε
∥yxunobs −Xxunobsβ∥2}

× nunobs∏
i=nobs+1

K∏
k=1

[{2π (σx
k)2}−1/2 exp{−1

2 (xi − μx
k)2 / (σx

k)2}]aik

×exp{− 1
2σ2

o
∥oxunobs − X̃xunobsα∥2} + const.

Taking the logarithm of both sides gives

log p (xunobs ∣ rest) = − 1
2σ2

ε
∥ yxunobs − β0 − βccxunobs − βxxunobs ∥2

−1
2 ∑K

k=1∑nunobs
i=1 aik

(ξ−μk)2
σ2
k

− 1
2σ2

o
∥ oxunobs − α0 − α1xunobs ∥2 +const

= − 1
2σ2

ε
(β2

x ∥ xunobs ∥2 +2β0βx1⊺nunobs
xunobs − 2βxy

⊺
xunobsxunobs

+2βcβxc⊺xunobsxunobs) − 1
2 (∥ xunobs ∥2 ∑K

k=1 a.k
σ2
k

−2 (1⊺nunobs
xunobs)∑K

k=1 a.kμk

σ2
k

) − 1
2σ2

o
(α2

1 ∥ xunobs ∥2
+2α0α11

⊺
nunobs

xunobs − 2α1o
⊺
xunobsxunobs) + const

= −1
2x
⊺
unobs (β2

x

σ2
ε
+∑K

k=1 a.k
σ2
k

+ α2
1

σ2
o
)xunobs

+x⊺unobs (βx

σ2
ε
(yxunobs − β01nunobs

− βccxunobs)
+1nunobs ∑K

k=1 a.kμk

σ2
k

+ α1

σ2
o
(oxunobs − α01nunobs

)) + const.

Taking expectations, we get

log q∗ (xunobs) = Eq {log p (xunobs ∣ rest)} + const

= −1
2 [x⊺unobs Eq (β2

x

σ2
ε
+∑K

k=1 a.k
σ2
k

+ α2
1

σ2
o
) xunobs

−2x⊺unobs Eq (βx

σ2
ε
(yxunobs − β01nunobs

− βccxunobs)
+1nunobs ∑K

k=1 a.kμk

σ2
k

+ α1

σ2
o
(oxunobs − α01nunobs

))]
+const.

174



6.B. DERIVATION OF ALGORITHM 9

Therefore,

q∗ (xunobs) is the N (μq(xunobs), σ2
q(xunobs)Inunobs

) density function,

where

σ2
q(xunobs) = 1/Eq (β2

x

σ2
ε
+∑K

k=1 a.k
σ2
k

+ α2
1

σ2
o
)

= 1/[μq(1/σ2
ε) {μ2

q(βx) + (Σq(β))33} +∑K
k=1μq(a.k)μq(1/σ2

k
)

+μq(1/σ2
o) {μ2

q(α1) + (Σq(α))22}] , and

μq(xunobs) = Eq (βx

σ2
ε
(yxunobs − β01nunobs

− βccxunobs)
+1nunobs ∑K

k=1 a.kμk

σ2
k

+ α1

σ2
o
(oxunobs − α01nunobs

))
= σ2

q(xunobs) [μq(1/σ2
ε) [μq(βx)yxunobs − 1nunobs

(μq(β0)μq(βx) + (Σq(β))13)
−cxunobs {μq(βc)μq(βx) + (Σq(β))23}] +μq(1/σ2

o) {μq(α1)oxunobs

−1nunobs
(μq(α0)μq(α1) + (Σq(α))12)} + 1nunobs ∑K

k=1μq(a.k)μq(μk)μq(1/σ2
k
)] .

Expressions for μq(α) and Σq(α)

This derivation is similar to the derivation for μq(β) and Σq(β), therefore

q∗ (α) is the N (μq(α), Σq(α)) density function,

where
μq(α) = μq(1/σ2

o)Σq(α)Eq(xunobs) (X̃)⊺ o, and

Σq(α) = (μq(1/σ2
o)Eq(xunobs) (X̃⊺X̃) + 1

σ2
α
I2)−1 .

Expressions for Bq(σ2
o), μq(1/σ2

o), Bq(ao) and μq(1/ao)

These derivations are similar to those given for Bq(σ2
ε), μq(1/σ2

ε), Bq(aε) and μq(1/aε) and so

we get the following updates:

q∗ (σ2
o) is the Inverse-Gamma (12 (n + 1) , Bq(σ2

o)) density function,

175



6.B. DERIVATION OF ALGORITHM 9

where

Bq(σ2
o) = 1

2Eq {∥ o − X̃ α ∥2} + μq(1/ao)
= 1

2
[∥ oxobs − X̃xobs μq(α) ∥2 +tr (X̃xobs Σq(α) X̃⊺xobs)

+ ∥ oxunobs ∥2 −2 oxunobs Eq(xunobs) (X̃xunobs) μq(α)
+tr{Eq(xunobs) (X̃⊺xunobsX̃xunobs) (Σq(α) +μq(α)μ⊺q(α))}] +μq(1/σ2

o).

In addition, using Result 1.4.3, we get

μq(1/σ2
o) = 1

2 (n + 1) /Bq(σ2
o).

Also,

q∗ (ao) is the Inverse-Gamma (1, Bq(ao)) density function,

where
Bq(ao) = μq(1/σ2

o) +A−2o , and

μq(1/ao) = 1/Bq(ao).

Expressions for μq(μx
k
) and σ2

q(μx
k
), 1 ≤ k ≤K

Keeping in mind that μx = (μx
1 , . . . , μ

x
K), we begin with

p (μx∣rest) ∝ p{x∣a, μx, (σx)2}p (μx)
= K∏

k=1
n∏
i=1

⎡⎢⎢⎢⎢⎣{2π (σ
x
k)2}−1/2 exp

⎧⎪⎪⎨⎪⎪⎩−
(xi − μx

k)2
2 (σx

k)2
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦
aik

× K∏
k=1

⎡⎢⎢⎢⎢⎣(2πσ
2
μ)−1/2 exp

⎧⎪⎪⎨⎪⎪⎩−
(μx

k − μμ)2
σ2
μ

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ .

Taking the logarithm of both sides gives

log p (μx ∣ rest) = −1
2

K∑
k=1

n∑
i=1

aik

⎧⎪⎪⎨⎪⎪⎩
(μx

k)2 − 2xiμ
x
k

(σx
k)2

⎫⎪⎪⎬⎪⎪⎭ −
1

2σ2
μ

{(μx
k)2 − 2μx

k μμ} + const

= −1
2

K∑
k=1

⎡⎢⎢⎢⎢⎣(μ
x
k)2

⎧⎪⎪⎨⎪⎪⎩
a●k
(σx

k)2 +
1

σ2
μ

⎫⎪⎪⎬⎪⎪⎭ − 2μx
k

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

∑n
i=1 aikxi
(σx

k)2 + μμ

σ2
μ

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ .
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Taking expectations, we get

Eq {log (μ∣rest)} = −1
2

K∑
k=1

((μx
k)2 [μq{1/(σx

k
)2}μq(a●k) + 1

σ2
μ

]
−2μx

k [μq{1/(σx
k
)2}

n∑
i=1

μq(aik) {Eq(xunobs) (x)}i + μμ

σ2
μ

]) .
Therefore,

q∗ (μ) is the product of N(μq(μx
k
), σ2

q(μx
k
)) density functions,

where μq(μx
k
) = σ2

q(μx
k
s) (μq(1/(σx

k
)2)

n∑
i=1

μq(aik) {Eq(xunobs) (x)}i + μμ

σ2
μ

) , and

σ2
q(μx

k
) = 1/( 1

σ2
μ
+ μ

q(1/(σx
k
)2)μq(a●k)) , 1 ≤ k ≤K.

Expressions for A{(σx
k
)2}, B{(σx

k
)2} and μ

q{1/(σx
k
)2}, 1 ≤ k ≤K

To begin, we note that

p{(σx)2 ∣rest} ∝ p (x∣a, μx, σx)p{(σx)2 ∣ax}
= K∏

k=1
n∏
i=1

⎡⎢⎢⎢⎢⎣{2π (σ
x
k)2}−1/2 exp

⎧⎪⎪⎨⎪⎪⎩−
(xi − μx

k)2
2 (σx

k)2
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦
aik

.

Taking the logarithm of both sides gives

log p{(σx)2 ∣rest} = −1
2

K∑
k=1

n∑
i=1

aik

⎡⎢⎢⎢⎢⎣log {(σ
x
k)2} + (xi − μx

k)2
(σx

k)2
⎤⎥⎥⎥⎥⎦ −

K∑
k=1

3
2 log {(σx

k)2}
− K∑
k=1

(1/axk) / (σx
k)2 + const

= − K∑
k=1

{1
2 (a●k + 1) + 1} log {(σx

k)2}
−1
2

K∑
k=1

(a●k n∑
i=1

(xi − μx
k)2 + 1/axk)/(σx

k) + const.

Taking expectations:

Eq [log {(σx)2 ∣rest}] = − K∑
k=1

{1
2
(μq(a●k) + 1) + 1} log {(σx

k)2}
−1
2

K∑
k=1

(μq(a●k)
n∑
i=1

Eq {(xi − μx
k)2} + μq(1/ax

k
))/(σx

k) + const
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where

Eq {(xi − μx
k)2} = {({Eq(xunobs) (x)}i − μq(μx

k
))2 + {σ2

q(xunobs) (x)}i + σ2
q(μx

k
)} .

Therefore,

q∗ {(σx)2} is the product of Inverse-Gamma (Aq{(σx
k
)}, Bq{(σx

k
)}) density functions,

where Aq{(σx
k
)} = 1

2μq(a●k) + 1
2 ,

Bq{(σx
k
)} = μq(1/ax

k
) + 1

2

n∑
i=1

μq(aik)Eq {(xi − μx
k)2} ,1 ≤ k ≤K.

In addition, using Result 1.4.3,

μ
q{1/(σx

k
)2} = Aq{(σx

k
)}/Bq{(σx

k
)}.

Expressions for B(ax
k
) and μq(1/ax

k
), 1 ≤ k ≤K

This derivation is similar to the one for Bq(σ2
ε) and μq(1/σ2

ε), and so this gives

q∗ (axk) is the product of Inverse-Gamma (1, Bq(ax
k
)) density functions,

where
Bq(ax

k
) = μ

q{1/(σx
k
)2} + (Ax

k)−2 , and

μq(1/ax
k
) = 1/Bq(ax

k
),1 ≤ k ≤K.

Expressions for μq(aik) and νik,1 ≤ i ≤ n,1 ≤ k ≤K

Firstly, we note that

p(a∣rest) = n∏
i=1

p (ai1, . . . ,aiK ∣rest) ,
where each p (ai1, . . . ,aiK ∣rest) has a Multinomial (1;ω1, . . . , ωK) distribution. Next, we

work with each ith component of this distribution.

p (ai1, . . . ,aiK ∣rest) ∝ p{x∣a,μx, (σx)2} p (ai1, . . . ,aiK ∣ω1, . . . , ωK)
= K∏

k=1

⎡⎢⎢⎢⎢⎣{2π (σ
x
k)2}−1/2 exp

⎧⎪⎪⎨⎪⎪⎩−
(xi − μx

k)2
(σx

k)2
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦
aik

× K∏
k=1

ωaik
k

aik!
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Taking the logarithm of both sides gives

log p (ai1, . . . ,aiK ∣rest) = K∑
k=1

aik
⎛
⎝log (ωk) − 1

2

⎡⎢⎢⎢⎢⎣log (2π) + log {(σx
k)2} + (xi − μx

k)2
(σx

k)2
⎤⎥⎥⎥⎥⎦
⎞
⎠

+const.
Taking expectations, we get

Eq {log p (ai1, . . . ,aiK ∣rest)} = K∑
k=1

aik (Eq {log (ωk)} − 1

2
[log (2π) +Eq {log (σx

k)2}
+Eq {(xi−μx

k)2
(σx

k
)2 }]) + const.

Using Results 1.4.3 and 1.4.10, this gives

Eq {log p (ai1, . . . ,aiK ∣rest)}
= K∑

k=1
aik (ψ (αq(ωk)) −ψ ( K∑

k=1
αq(ωk)) − 1

2
{log(2π) + log (B

q{(σx
k
)2})

−ψ (A
q{(σx

k
)2}) + μ

q{1/(σx
k
)2} ({Eq(xunobs) (x⊺x)}i + {σ2

q(xunobs) (x)}i
−2{Eq(xunobs) (x)}iμq(μx

k
) +μ2

q(μx
k
) + σ2

q(μx
k
))}) + const

= K∑
k=1

aik (νik + const) + const

where const does not depend on k (e.g. const includes −1
2 log(2π) and −ψ (∑K

k=1 αq(ωk))).
Note that the ‘proportional to’ sign ∝ allows us to get rid of ‘const’ below.

q∗(ai1, . . . ,aiK) ∝ K∏
k=1

(eνik+const)aik

∝ K∏
k=1

( expνik+const
∑K

k′=1 eνik+const
)aik ,

since C = 1

∑K
k′=1 eνik+const does not depend on k, and ∏K

k=1 ( 1C )aik = 1C given that ∑K
k=1 aik = 1.

Hence the cancellation of const. Therefore,

q∗ (ai1, . . . ,aiK) is the Multinomial (1 ; μq(ai1), . . . , μq(aiK))distribution,
where

μq(aik) = expνik

∑K
k′=1 eνik

, 1 ≤ k ≤K
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and

νik = ψ (αq(ωk)) + 1
2ψ (A

q{(σx
k
)2}) − 1

2 log (Bq{(σx
k
)2})

−1
2Aq{(σx

k
)2} ({Eq(xunobs) (x⊺x)}i + {σ2

q(xunobs) (x)}i
−2{Eq(xunobs) (x)}iμq(μx

k
) +μ2

q(μx
k
) + σ2

q(μx
k
))/Bq{(σx

k
)2}.

Expression for αq(ωk),1 ≤ k ≤K

We begin with

p (ω1, . . . , ωK ∣rest) ∝ p(ω1, . . . , ωK) × n∏
i=1

p(ai1, . . . ,aiK ∣ω1, . . . , ωK)

= n∏
i=1

K∏
k=1

ωaik
k

aik!
× Γ (∑K

k=1 αk)
Γ(αk) (ωk)αk−1 .

Taking the logarithm of both sides gives

log p (ω1, . . . , ωK ∣rest) = n∑
i=1

K∑
k=1

(aik log(ωk) − log(aik!)) + log(Γ( K∑
k=1

αk))
− K∑
k=1

log (Γ (αk)) + K∑
k=1

(αk − 1) log (ωk) + const

= n∑
i=1

K∑
k=1

aik log (ωk) + K∑
k=1

(αk − 1) log (ωk) + const.

Taking expectations, we get

Eq {log p (ω1, . . . , ωK ∣rest)} = n∑
i=1

K∑
k=1

μq(aik) log (ωk) + K∑
k=1

(αk − 1) log (ωk) .
Therefore,

q∗ (ω1, . . . , ωK) is the Dirichlet (αq(ω1),⋯, αq(ωk)) density function,

where

αq(ωk) = μq(a.k) + αk, 1 ≤ k ≤K.
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

6.C Derivation of the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given in (6.7) is

log p(y; q) =
−1
2 (K + 5) log(π) + 1

2 (p + q +K + nunobs) − p
2 log (σ2

β) + 1
2 log ∣Σq(β)∣ − log (Aε)

−1
2 (2n + nunobs + K∑

k=1
n∑
i=1

μq(aik)) log (2π) − 1
2σ2

β

{∥μq(β)∥2 + tr (Σq(β))} + log Γ{1
2 (n + 1)}

−1
2 (n + 1) log (Bq(σ2

ε)) − log (Bq(aε)) + μq(1/σ2
ε)μq(1/aε) − q

2 log (σ2
α) + 1

2 log ∣Σq(α)∣
− log (Ao) − 1

2σ2
α
{∥μq(α)∥2 + tr (Σq(α))} − K∑

k=1
log (Ax

k) + log Γ{1
2 (n + 1)}

−K
2 log (σ2

μ) − 1
2 (n + 1) log (Bq(σ2

o)) − log (Bq(ao)) + μq(1/σ2
o)μq(1/ao)

+nunobs

2 log (σ2
q(xunobs)) − 1

2σ2
μ

K∑
k=1

{(μq(μx
k
) − μμ)2 + σ2

q(μx
k
)} + 1

2

K∑
k=1

log (σ2
q(μx

k
))

+ K∑
k=1

log Γ{1
2
(μq(a●k) + 1)} − 1

2

K∑
k=1

(μq(a●k) + 1) log (B
q{(σx

k
)2}) −

K∑
k=1

log (Bq(ax
k
))

+ K∑
k=1

μ
q{1/(σx

k
)2}μq(1/ax

k
) − n∑

i=1
K∑
k=1

log (μq(aik))μq(aik) − log Γ( K∑
k=1

αq(ωk))
+ log Γ( K∑

k=1
αk) − K∑

k=1
log Γ (αk) + K∑

k=1
log Γ (αq(ωk)) .

Derivation: The lower bound on the marginal log-likelihood is achieved through the fol-

lowing expression:

log p (y; q) = Eq [log p{y,β, σ2
ε , aε,o,α, σ2

o , ao,x,μ
x, (σx)2 ,ax,a,ω}

− log q∗ {β, σ2
ε , aε,α, σ2

o , ao,xunobs,μ
x, (σx)2 ,ax,a,ω}]

= Eq {log p(y∣β,x, σ2
ε)} +Eq {log p(o∣α,x, σ2

o)}
+Eq [log p{xobs∣a,μx, (σx)2}] +Eq {log p(β) − log q∗(β)}
+Eq {log p(σ2

ε ∣aε) − log q∗(σ2
ε)} +Eq {log p(aε) − log q∗(aε)}

+Eq {log p(α) − log q∗(α)} +Eq {log p(σ2
o ∣ao) − log q∗(σ2

o)}
+Eq {log p(ao) − log q∗(ao)} +Eq {log p(μx) − log q∗(μx)}
+Eq [log p{xunobs∣a,μx, (σx)2} − log q∗(xunobs)]
+Eq [log p{(σx)2 ∣ax} − log q∗ {(σx)2}] +Eq {log p(ax) − log q∗(ax)}
+Eq {log n∏

i=1
p (ai1, . . . , aiK ∣ω1, . . . , ωK) − log

n∏
i=1

q∗(ai1, . . . , aiK)}
+Eq {log p(ω1, . . . , ωK) − log q∗ (ω1, . . . , ωK)} .
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First we note that

log p(y∣β,x, σ2
ε) = −n

2 log(2π) − n
2 log(σ2

ε) − 1
2σ2

ε
∥y −Xβ∥2.

Therefore,

Eq {log p(y∣β,x, σ2
ε)} = −n

2 log(2π) − n
2Eq {log(σ2

ε)} − 1
2μq(1/σ2

ε)Eq∥y −Xβ∥2
where

Eq∥y −X β∥2 = ∥yxobs −Xxobs μq(β)∥2 + tr (X⊺xobsXxobsΣq(β))
+∥yxunobs∥2 − 2y⊺xunobsEq(xunobs) (Xxunobs)μq(β)
+tr [Eq(xunobs) (X⊺xunobsXxunobs) (Σq(β) +μq(β)μ⊺q(β))] .

Similarly,

Eq {log p(o∣α,x, σ2
o)} = −n

2 log(2π) − n
2Eq {log(σ2

o)} − 1
2μq(1/σ2

o)Eq∥o − X̃α∥2
where

Eq∥o − X̃ α∥2 = ∥oxobs − X̃xobs μq(α)∥2 + tr (X̃⊺xobsX̃xobsΣq(α))
+∥oxunobs∥2 − 2o⊺xunobsEq(xunobs) (X̃xunobs)μq(α)
+tr [Eq(xunobs) (X̃⊺xunobsX̃xunobs) (Σq(α) +μq(α)μ⊺q(α))] .

Next,

log p{xobs∣a,μx, (σx)2} = −1
2

K∑
k=1

nobs∑
i=1

aik

⎡⎢⎢⎢⎢⎣log {2π (σ
x
k)2} + (xi − μx

k)2
(σx

k)2
⎤⎥⎥⎥⎥⎦

= −1
2

K∑
k=1

nobs∑
i=1

aik log(2π) − 1
2

K∑
k=1

a●k log {(σx
k)2}

−1
2

K∑
k=1

nobs∑
i=1

aik
(xi − μx

k)
(σx

k)2 .

Taking expectations of both sides gives

Eq [log p{xobs∣a,μx, (σx)2}] = −1
2

K∑
k=1

nobs∑
i=1

μq(aik) log(2π) − 1
2

K∑
k=1

μq(a●k)Eq [log {(σx
k)2}]

−1
2

K∑
k=1

nobs∑
i=1

μq(aik)μq{1/(σx
k
)2}Eq {(xi − μx

k)}
where

Eq {(xi − μx
k)2} = {(xi − μq(μx

k
))2 + σ2

q(μx
k
)} .
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Moving on to the next expectation update, we have

log p(β) = −3
3 log(2π) − 3

2 log(σ2
β) − 1

2σ2
β

∥β∥2
Taking the expectation of both sides gives:

Eq {log p(β)} = −p
2 log(2π) − p

2 log(σ2
β) − 1

2σ2
β

Eq {∥β∥2}
= −p

2 log(2π) − p
2 log(σ2

β) − 1
2σ2

β

{∥μq(β)∥2 + tr (Σq(β))} .
The entropy of q∗ (β) is

−Eq {log q∗(β)} = 1
2 log {(2πe)p ∣Σq(β)∣}

= 1
2 log ∣Σq(β)∣ + p

2 log(2π) + p
2 .

Therefore

Eq {log p(β) − log q∗(β)} = −p
2 log(σ2

β) − 1
2σ2

β

{∥μq(β)∥2 + tr (Σq(β))} + 1
2 log ∣Σq(β)∣ + p

2 .

Next,

log p(σ2
ε ∣aε) = −1

2 log(aε) − log Γ (12) − 3
2 log(σ2

ε) − (1/aε) /σ2
ε

= −1
2 log(aε) − 1

2 log(π) − 3
2 log(σ2

ε) − (1/aε) /σ2
ε .

Taking expectations, we get

Eq {log p(σ2
ε ∣aε)} = −1

2Eq {log(aε)} − 1
2 log(π) − 3

2Eq {log(σ2
ε)} − μq(1/aε)μq(1/σ2

ε).

Also,

Eq {log q∗(σ2
ε)} = 1

2 (n + 1) logBq(σ2
ε) − log Γ{1

2 (n + 1)} − {1
2 (n + 1) + 1} log(σ2

ε)
−Bq(σ2

ε)/σ2
ε .

Therefore,

Eq {log p(σ2
ε ∣aε) − log q∗(σ2

ε)} = −1
2Eq {log(aε)} + log Γ{1

2(n + 1)} − 1
2 log(π)

+(Bq(σ2
ε) − μq(1/aε))μq(1/σ2

ε) + n
2Eq {log(σ2

ε)}
−1
2(n + 1) log (Bq(σ2

ε)) .
Next we have

log p(aε) = − log(Aε) − 3
2 log(aε) − 1

2 log(π) − (1/A2
ε) /aε.
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Taking the expectation of both sides gives

Eq {log p(aε)} = − log(Aε) − 3
2Eq {log(aε)} − 1

2 log(π) − (1/A2
ε)μq(1/aε).

Also,

Eq {log q∗(aε)} = log (Bq(aε)) − 2Eq {log(aε)} −Bq(aε)μq(1/aε).

Therefore,

Eq {log p(aε) − log q∗(aε)} = − log(Aε) − 1
2 log(π) − log (Bq(aε))

+(Bq(aε) − 1/A2
ε)μq(1/aε) + 1

2Eq {log(aε)} .
Similarly to Eq {log p(β) − log q∗(β)},
Eq {log p(α) − log q∗(α)} = − q

2 log(σ2
α) − 1

2σ2
α
{∥μq(α)∥2 + tr (Σq(α))} + 1

2 log ∣Σq(α)∣ + q
2 .

Similarly to Eq {log p(σ2
ε ∣aε) − log q∗(σ2

ε)},
Eq {log p(σ2

o ∣ao) − log q∗(σ2
o)} = −1

2Eq {log(ao)} + log Γ{1
2(n + 1)} − 1

2 log(π)
+(Bq(σ2

o) − μq(1/ao))μq(1/σ2
o) + n

2Eq {log(σ2
o)}

−1
2(n + 1) log (Bq(σ2

o)) .
Similarly to Eq {log p(aε) − log q∗(aε)},

Eq {log p(ao) − log q∗(ao)} = − log(Ao) − 1
2 log(π) − log (Bq(ao))

+(Bq(ao) − 1/A2
o)μq(1/ao) + 1

2Eq {log(ao)} .
Next,

log p{xunobs∣a,μx, (σx)2} = −1
2

K∑
k=1

n∑
i=nobs+1

aik log(2π) − 1
2

K∑
k=1

a●k log {(σx
k)2}

−1
2

K∑
k=1

n∑
i=nobs+1

aik
(xi − μx

k)
(σx

k)2 .

Taking expectations of both sides gives

Eq [log p{xunobs∣a,μx, (σx)2}] = −1
2

K∑
k=1

n∑
i=nobs+1

μq(aik) log(2π) − 1
2

K∑
k=1

μq(a●k)Eq [log {(σx
k)2}]

−1
2

K∑
k=1

n∑
i=nobs+1

μq(aik)μq{1/(σx
k
)2}Eq {(xi − μx

k)}
where

Eq {(xi − μx
k)2} = {({Eq(xunobs) (x)}i − μq(μx

k
))2 + {σ2

q(xunobs) (x)}i + σ2
q(μx

k
)} .
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The entropy of q∗(xunobs) is

−Eq {log q∗(xunobs)} = 1
2 log ∣σ2

q(xunobs)Inunobs
∣ + nunobs

2 log(2π) + nunobs

2 .

Therefore,

Eq [log p{xunobs∣a,μx, (σx)2} − log q∗(xunobs)] =
−1
2

K∑
k=1

n∑
nobs+1

μq(aik) log(2π) − 1
2

K∑
k=1

μq(a●k)Eq [log {(σx
k)2}]

−1
2

K∑
k=1

n∑
i=nobs+1

μq(aik)μq{1/(σx
k
)2}Eq {(xi − μx

k)} + nunobs

2 log(σ2
q(xunobs))

+nunobs

2 log(2π) + nunobs

2 .

Moving on, we next have

log p(μx) = −K
2 log(2π) − K

2 log(σ2
μ) − 1

2σ2
μ

K∑
k=1

∥μx
k − μμ∥2.

Taking expectations, we get

Eq {log p(μx)} = −K
2 log(2π) − K

2 log(σ2
μ) − 1

2σ2
μ

K∑
k=1

Eq {∥μx
k − μμ∥2}

= −K
2 log(2π) − K

2 log(σ2
μ) − 1

2σ2
μ

K∑
k=1

{∥μq(μx
k
) − μμ∥2 + σq(μx

k
)} .

The entropy of q∗(μx) is

−Eq {log q∗(μx)} = K
2 + K

2 log(2π) + 1
2

K∑
k=1

log (σq(μx
k
)) .

Therefore,

Eq {log p(μx) − log q∗(μx)} = −K
2 log(σ2

μ) 1
2σ2

μ

K∑
k=1

{∥μq(μx
k
) − μμ∥2 + σq(μx

k
)} + K

2

+1
2

K∑
k=1

log (σq(μx
k
)) .

Next,

log p{(σx)2 ∣ax} = −1
2

K∑
k=1

log (axk) − K
2 log(π) − 3

2

K∑
k=1

log {(σx
k)2} − K∑

k=1
(1/axk) /(σx

k)2
Taking expectations, we get

Eq [log p{(σx)2 ∣ax}] = −1
2

K∑
k=1

Eq {log (axk)} − K
2 log(π) − 3

2

K∑
k=1

Eq [log {(σx
k)2}]

− K∑
k=1

μq(1/ax
k
)μq{1/(σx

k
)2}.
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Also,

Eq [log q∗ {(σx)2}] = 1
2

K∑
k=1

(μq(a●k) + 1) log (B
q{(σx

k
)2}) −

K∑
k=1

log Γ{1
2
(μq(a●k) + 1)}

− K∑
k=1

{1
2
(μq(a●k) + 1) + 1}Eq [log {(σx

k)2}]
−B

q{(σx
k
)2}μq{1/(σx

k
)2}.

Therefore,

Eq [log p{(σx)2 ∣ax} − log q∗ {(σx)2}]
= −1

2

K∑
k=1

Eq {log (axk)} − K
2 log(π) + K∑

k=1
log Γ{1

2
(μq(a●k) + 1)}

+1
2

K∑
k=1

μq(a●k)Eq [log {(σx
k)2}] − 1

2

K∑
k=1

(μq(a●k) + 1) log (B
q{(σx

k
)2})

+ K∑
k=1

μ
q{1/(σx

k
)2} {Bq{(σx

k
)2} − μq(1/ax

k
)} .

Similarly to Eq {log p(aε) − log q∗(aε)},
Eq {log p(ax) − log q∗(ax)} = − K∑

k=1
log(Ax

k) − 1
2 log(π) −

K∑
k=1

log (Bq(ax
k
))

+ K∑
k=1

(Bq(ax
k
) − 1/(Ax

k)2)μq(1/ax
k
) + 1

2

K∑
k=1

Eq {log(axk)} .
Moving on, we have

log
n∏
i=1

p (ai1, . . . , aiK ∣ω1, . . . , ωK) = n∑
i=1

K∑
k=1

{aik log(ωk) − log(aik)} .
Taking expectations of both sides, we get

Eq {log n∏
i=1

p (ai1, . . . , aiK ∣ω1, . . . , ωK)} = n∑
i=1

K∑
k=1

[μq(aik)Eq {log(ωk)} −Eq {log(aik)}] .
Also,

Eq {log n∏
i=1

q∗ (ai1, . . . , aiK)} = n∑
i=1

K∑
k=1

[μq(aik) log (μq(aik)) −Eq {log (aik)}] .
Therefore,

Eq {log n∏
i=1

p (ai1, . . . , aiK ∣ω1, . . . , ωK) − log
n∏
i=1

q∗ (ai1, . . . , aiK)}
= n∑

i=1
K∑
k=1

μq(aik) [Eq {log(ωk)} − log (μq(aik))] .
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Next,

log p(ω1, . . . , ωK) = log Γ( K∑
k=1

αk) − K∑
k=1

log Γ (αk) + K∑
k=1

(αk − 1) log (ωk) .
Taking the expectation of both sides gives

Eq {log p(ω1, . . . , ωK)} = log Γ( K∑
k=1

αk) − K∑
k=1

log Γ (αk) + K∑
k=1

(αk − 1)Eq {log (ωk)} .
Also,

Eq {log q∗(ω1, . . . , ωK)} = log Γ( K∑
k=1

αq(ωk)) −
K∑
k=1

log Γ (αq(ωk))
+ K∑
k=1

(αq(ωk) − 1)Eq {log (ωk)} .
Therefore,

Eq {log p(ω1, . . . , ωK) − log q∗(ω1, . . . , ωK)} = log Γ( K∑
k=1

αk) − log Γ( K∑
k=1

αq(ωk))
− K∑
k=1

log Γ (αk) + K∑
k=1

log Γ (αq(ωk))
+(αk − αq(ωk))Eq {log (ωk)} .

Adding all expressions together, we get the lower bound expression given in (6.7). We also

note that the following expressions equate to zero.

K∑
k=1

(αk − αq(ωk))Eq {log (ωk)} + n∑
i=1

K∑
k=1

μq(aik)Eq {log (ωk)} ,
{Bq(σ2

ε) − μq(1/aε)}μq(1/σ2
ε) − 1

2μq(1/σ2
ε)Eq∥y −Xβ∥2,

{Bq(σ2
o) − μq(1/ao)}μq(1/σ2

o) − 1
2μq(1/σ2

o)Eq∥o − X̃α∥2,
and

K∑
k=1

μ
q{1/(σx

k
)2} {Bq{(σx

k
)2} − μq(1/ax

k
)}

−1
2

n∑
i=1

K∑
k=1

μq(aik)μq{1/(σx
k
)2} {({Eq(xunobs) (x)}i − μq(μx

k
))2 + {σ2

q(xunobs) (x)}i + σ2
q(μx

k
)} .
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Chapter 7

Alternative approach based on

variational message passing

7.1 Introduction

Throughout this thesis, we have dealt with the situation where approximate inference of a

possibly large complex graphical model is required. Until now we have shown the details

and benefits of using MFVB for fitting these models. An alternative approach, which

produces the same approximation but with a different algebraic system, is variational

message passing (VMP). The MFVB inference used by Infer.NET is based on the VMP

approach. The advantage of VMP compared with MFVB is that the messages are obtained

by using only a handful of algebraic rules. This allows more straightforward extension to

arbitrarily large models. In this chapter we only derive the VMP alternative algorithms

for two models from earlier chapters. Hence, the extension to arbitrarily large models is

not covered here.

The essence of VMP is to pass messages on a factor graph. These two notions are

introduced in Section 7.2. Often, these messages are exponential family density functions

of model parameters and are generally summarised by their natural parameter vector.

In addition, the use of natural parameterisations mean that these rules involve simple

algebraic manipulations. As will become apparent in section 7.7.1, VMP makes use of the

fact that particular forms of messages occur repeatedly, so algebra corresponding to these

forms only need to be carried out once.

Even though VMP can be shown to be more efficient than MFVB in terms of per-
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forming the necessary algebra, it can also be notationally demanding to outline the rules

involved for general graphical models. This is mainly due to the notational and graphical

forms contained in Winn & Bishop (2005), Minka (2005) and Minka & Winn (2009) to

differ from each other in terms of the underlying rules associated with VMP. We have

found it best to work with the description of VMP as given in Minka (2005) and thus

have adopted the same notation here. The primary aim of this chapter is to provide a

notationally user friendly guide to the general VMP approach, with examples considering

formulation and comparison of the algorithms in Chapters 2 and 6 of this thesis.

Section 7.2 gives description of the factor graph representation of Bayesian hierarchi-

cal models. Sections 7.3, 7.4 and 7.5 introduce the natural parameter forms, primitives

and function definitions corresponding to the density functions that are used within this

chapter. The general VMP algorithm is given in Section 7.6 and the reader is provided a

walk through using two examples in Section 7.7. Finally, the derivations of the algorithms

presented are given in the Appendices that follow.

7.2 Factor graph representation

Factor graphs play a major role in VMP as they are used to illustrate the connection

between random variables in a specified model. The aim is to compute messages which

are then passed between factors and corresponding nodes on a factor graph. Probabilis-

tic DAGs have direct factor graph representations, e.g., given a DAG that illustrates the

conditional independence structure of, say, the random variables x1, . . . , xk, these repre-

sentations arise from relationships such as

p(x1, . . . , xk) = k∏
i=1

p(xi ∣parents of xi). (7.1)

Another way to represent a model by its factor graph is to derive the joint density function

of the random variables and the observed data in terms of their corresponding factors. For

example, consider the simple linear regression model

y ∣β, σ2 ∼ N (Xβ, σ2I) , β ∼ N (0, σ2
βI) ,

σ2 ∣a ∼ Inverse-Gamma (12 ,1/a) , a ∼ Inverse-Gamma (12 ,1/A2) . (7.2)

The joint density function of y, β, σ2 and a is

p(y, β, σ2, a) = p(y ∣β, σ2)p(σ2 ∣a)p(β)p(a), (7.3)
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p(β)

β

p(y|β, σ2)

σ2

p(σ2|a)

a

p(a)

Figure 7.1: Factor graph corresponding to model (7.2).

where each of the density functions p(y ∣β, σ2), p(σ2 ∣a), p(β) and p(a) are referred to

as factors. The corresponding factor graph is given in Figure 7.1. The circular nodes

correspond to each of the random variables in (7.2) and the solid squares correspond to

each of the factors in the right-hand side of (7.3), which can also be derived from (7.1).

To keep notation simple, we suppress the dependence of β and σ2 on the observed data

vector y in the factor graph. Minka (2005) argues that factor graph representations of

models are useful for VMP approximate inference as will be illustrated in the sections to

follow.

7.2.1 Additional notation

When using VMP it is convenient to take advantage of the benefits of using a factor graph

representation of a statistical model. Factor neighbours notation play an important role in

the understanding of VMP in the context of factor graph representations. The following

definitions are key to the introduction of Algorithm 10 in Section 7.6.

Definition 7.2.1. Let A and B be sets such that B ⊆ A. Then

A/B = set containing elements of A that are not in B.

We define Nhid to be the number of hidden nodes and Nfac to be the number of factors

in a factor graph. For example, in Figure 7.2, Nhid = 10 and Nfac = 9 since θ1, . . . , θ9 and

φ are hidden nodes and f1, . . . , f9 are factor nodes.

Definition 7.2.2. Consider a factor graph with factors fj, 1 ≤ j ≤ Nfac and non-factor

nodes θi, 1 ≤ i ≤ Nhid. Then for each j = 1, . . . ,Nfac,

neighbours(j) = {1 ≤ i ≤ Nhid ∶ θi is a neighbour of fj}.
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θ1

θ2
θ3

θ4

θ5

θ6

θ7

θ8 θ9

φ

f1

f2
f3

f4

f5
f6

f7

f8

f9

f10

Figure 7.2: Example of a factor graph.

It follows that each fj is a function of its corresponding neighbours on the factor graph.

7.3 Natural parameter forms

Here we provide the forms of the density functions used for the derivations of Algorithms

11 and 12 given later in this chapter.

Univariate normal distribution

The natural parameter form of the univariate normal distribution with mean μ and vari-

ance σ2 is

p(x;μ,σ2) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
x

x2

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

μ/σ2

−1/2σ2

⎤⎥⎥⎥⎥⎦ − (
μ

2σ2 + log(σ2)
2 ) − 1

2 log (2π)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= exp{T (x)⊺η − ( μ
2σ2 + log(σ2)

2 ) − 1
2 log (2π)}

where

T (x) ≡ ⎡⎢⎢⎢⎢⎣
x

x2

⎤⎥⎥⎥⎥⎦ , η ≡ ⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎣

μ/σ2

−1/2σ2

⎤⎥⎥⎥⎥⎦
are the natural statistic and natural parameter vectors. Under this representation, we

define Nnat to be such that

x ∼ Nnat (η1, η2) .
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Fact 7.3.1. The ordinary and natural parameters of the univariate normal distribution

are mapped between each other through:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = μ/σ2

η2 = −1/2σ2
and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ = −η1/2η2
σ2 = −1/2η2.

Multivariate normal distribution

The multivariate Normal density function with n × 1 mean vector μ and n × n variance-

covariance matrix Σ is given in Definition 1.4.7. This density function can also be written

in its natural parameter form as

p(x;μ,Σ) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

x

vec (xx⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

Σ−1μ
−1
2vec (Σ−1)

⎤⎥⎥⎥⎥⎦ −
1
2μ
⊺Σ−1μ − 1

2 log ∣2πΣ∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= exp{T (x)⊺η − 1
2
(μ⊺Σ−1μ + log ∣Σ∣) − n

2 log(2π)}
where

T (x) ≡ ⎡⎢⎢⎢⎢⎣
x

vec (xx⊺)
⎤⎥⎥⎥⎥⎦ , η ≡ ⎡⎢⎢⎢⎢⎣

η1

η2,vec

⎤⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎣

Σ−1μ
−1
2vec (Σ−1)

⎤⎥⎥⎥⎥⎦
are the natural statistic and natural parameters vectors. We define Nnat,vec to be such

that

x ∼ Nnat,vec (η1,η2,vec) .
Fact 7.3.2. The ordinary and natural parameters of the multivariate normal distribution

are mapped between each other through the relationship:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = Σ−1μ
η2,vec = −1

2vec (Σ−1)
and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ = −1

2
{vec−1 (η2,vec)}−1 η1

Σ = −1
2
{vec−1 (η2,vec)}−1 .

Inverse-Gamma distribution

The Inverse-Gamma density function for a scalar variable x is given in Definition 1.4.9

but can also be written in its natural parameter form as

p(x;A,B) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
logx

1/x
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−A − 1

−B
⎤⎥⎥⎥⎥⎦ +A logB − log Γ (A)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp{T (x)⊺η +A logB − log Γ (A)}
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where

T (x) ≡ ⎡⎢⎢⎢⎢⎣
logx

1/x
⎤⎥⎥⎥⎥⎦ , η ≡ ⎡⎢⎢⎢⎢⎣

η1

η2

⎤⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎣
−A − 1

−B
⎤⎥⎥⎥⎥⎦

are the natural statistic and natural parameter vectors for the Inverse-Gamma distribu-

tion. We define IGnat to be such that

x ∼ IGnat (η1, η2) .
Fact 7.3.3. The ordinary and natural parameters of the Inverse-Gamma distribution are

mapped between each other via:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = −A − 1

η2 = −B and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A = −η1 − 1

B = −η2.
Inverse-Wishart distribution

The Inverse-Wishart density function with n × n positive definite scale matrix B and

degrees of freedom a is given in Definition 1.4.3.9 but has another representation using its

natural parameter form:

p(X;μ,Σ) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣X ∣
vec (X−1)

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2 (a + n + 1)
−1
2vec (B)

⎤⎥⎥⎥⎥⎦ −
A
2 log ∣B∣ − logCn,a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp{T (X)⊺η − A

2 log ∣B∣ − logCn,a}
where

T (X) ≡ ⎡⎢⎢⎢⎢⎣
log ∣X ∣

vec (X−1)
⎤⎥⎥⎥⎥⎦ , η ≡ ⎡⎢⎢⎢⎢⎣

η1

η2

⎤⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎣
−1
2 (a + n + 1)
−1
2vec (B)

⎤⎥⎥⎥⎥⎦
are the natural statistic and natural parameter vectors for the Inverse-Wishart distribution.

We define IWnat to be such that

X ∼ IWnat (η1,η2) .
Fact 7.3.4. The ordinary and natural parameters of the Inverse-Wishart distribution can

be mapped between each other via:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = −1

2 (a + n + 1)
η2 = −1

2vec (B) and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A = −2η1 − n − 1

B = −2vec−1(η2).
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Multinomial distribution

The Multinomial density function with 1 independent trial and probability of success

p = (p1, . . . , pk) is given in Definition 1.4.13 but has another representation using its

natural parameter form:

p(x1, . . . , xk; 1, p1, . . . , pk) = exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
x1⋮
xk

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎣
log (p1)⋮
log (pk)

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭= exp{T (x)⊺η}
where

T (X) ≡
⎡⎢⎢⎢⎢⎢⎢⎣
x1⋮
xk

⎤⎥⎥⎥⎥⎥⎥⎦
, η ≡

⎡⎢⎢⎢⎢⎢⎢⎣
η1⋮
ηk

⎤⎥⎥⎥⎥⎥⎥⎦
≡
⎡⎢⎢⎢⎢⎢⎢⎣
log (p1)⋮
log (pk)

⎤⎥⎥⎥⎥⎥⎥⎦
are the natural statistic and natural parameter vectors. We define Mnat to be such that

x1, . . . , xk ∼Mnat (1, η1, . . . , ηk) .
Fact 7.3.5. The ordinary and natural parameters of the Multinomial distribution can be

mapped between each other via:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = log (p1)⋮
ηk = log (pk)

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1 = eη1

⋮
pk = eηk .

Dirichlet distribution

The Dirichlet density function with parameters α1, . . . αk is given in Definition 1.4.14. Its

natural parameter form is expressed as

p (x1, . . . , xk∣α1, . . . , αk) = exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
log (x1)⋮
log (xk)

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎣
α1 − 1

⋮
αk − 1

⎤⎥⎥⎥⎥⎥⎥⎦
+ K∑
k=1

log {Γ (αk)} − log{Γ( K∑
k=1

αk)}}

= exp{T (x)⊺η + K∑
k=1

log {Γ (αk)} − log{Γ( K∑
k=1

αk)}}

194



7.4. PRIMITIVE INTEGRALS AND RESULTS

where

T (x) ≡
⎡⎢⎢⎢⎢⎢⎢⎣
log (x1)⋮
log (xk)

⎤⎥⎥⎥⎥⎥⎥⎦
, η ≡

⎡⎢⎢⎢⎢⎢⎢⎣
η1⋮
ηk

⎤⎥⎥⎥⎥⎥⎥⎦
≡
⎡⎢⎢⎢⎢⎢⎢⎣
α1 − 1

⋮
αk − 1

⎤⎥⎥⎥⎥⎥⎥⎦
are the natural statistic and natural parameter vectors. We define Dnat to be such that

x1, . . . , xk ∼ Dnat (η1, . . . , ηk) .
Fact 7.3.6. The ordinary and natural parameters of the Dirichlet distribution can be

mapped between each other via:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η1 = α1 − 1

⋮
ηk = αk − 1

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1 = η1 + 1

⋮
pk = ηk + 1.

7.4 Primitive integrals and results

The following primitives and results follow immediately from the results involving moments

of random variables which take on distributions from Section 7.3. These moments aid in

the derivation of the algorithms considered in this chapter as they are presented in their

natural parameter forms.

We define

pNnat

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠ to be the Nnat (η1, η2) density function in x,

pNnat,vec

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2,vec

⎤⎥⎥⎥⎥⎦
⎞
⎠ to be the Nnat,vec (η1,η2,vec) density function in x,

pIGnat

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠ to be the IGnat (η1, η2) density function in x and

pIWnat

⎛
⎝X;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠ to be the IWnat (η1,η2) density function in X.

We now present various primitives and results concerning moments of the density functions

given in Section 7.3.

Primitive 7.4.1.

∫ ∞
−∞x2 pNnat

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠dx = η21 − 2η2

4η22
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Primitive 7.4.2.

∫ ∞
−∞ ∫ ∞

−∞ (x − y)2 pNnat

⎛
⎝x, y;

⎡⎢⎢⎢⎢⎣
ηx,1

ηx,2

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
ηy,1

ηy,2

⎤⎥⎥⎥⎥⎦
⎞
⎠dxdy

= ηx,2 (η2x,1 − 2ηx,2)
4η3x,2

+ ηy,2 (η2y,1 − 2ηy,2)
4η3y,2

− ηx,1ηy,1

2ηx,2ηy,2

where pNnat

⎛
⎝x, y;

⎡⎢⎢⎢⎢⎣
ηx,1

ηx,2

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
ηy,1

ηy,2

⎤⎥⎥⎥⎥⎦
⎞
⎠ is the joint density function of x and y.

Primitive 7.4.3. If x is a d × 1 vector

∫
Rd
x⊺x pNnat,vec

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2,vec

⎤⎥⎥⎥⎥⎦
⎞
⎠dx

= 1
4 tr ({vec−1 (η2,vec)}−1 [η1η

⊺
1 {vec−1 (η2,vec)}−1 − 2I])

Primitive 7.4.4. For any n × 1 vector a and n × p matrix B,

∫
Rp

(a −Bx) (a −Bx)⊺ pNnat,vec

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2,vec

⎤⎥⎥⎥⎥⎦
⎞
⎠dx

= aa⊺ + {vec−1 (η2,vec)}−1 [aη⊺1B⊺ + 1
4Bη1η

⊺
1B
⊺ {vec−1 (η2,vec)}−1 − 1

2BB⊺]

Primitive 7.4.5. If [x1, . . . , xd]⊺ ∼ Nnat,vec (η1,η2,vec), then

∫
Rd
xixj pNnat,vec

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2,vec

⎤⎥⎥⎥⎥⎦
⎞
⎠dx

= −1
8 [{vec−1 (η2,vec)}−1 η1]

i
[{vec−1 (η2,vec)}−1 η1]

j
+ [{vec−1 (η2,vec)}−1]

ij

Primitive 7.4.6.

∫ ∞
0

1

x
pIGnat

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠dx = η1 + 1

η2

Primitive 7.4.7.

∫ ∞
0

log (x) pIGnat

⎛
⎝x;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠dx = log (−η2) −ψ (−η1 − 1)
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Primitive 7.4.8.

∫
S
X−1 pIWnat

⎛
⎝X;

⎡⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎦
⎞
⎠dX = (η1 + n + 1

2
){vec−1 (η2)}−1

where S is the set of all symmetric positive definite n × n matrices.

Result 7.4.1. Suppose that x1, . . . , xK ∼ Mnat (1; η1, . . . , ηK). Then

E(xk) = eηk , 1 ≤ k ≤K.

Result 7.4.2. Suppose that x1, . . . , xK ∼ Dnat (η1, . . . , ηK). Then

E {log (xk)} = ψ (ηk + 1) − ψ { K∑
k=1

(ηk + 1)} , 1 ≤ k ≤K.

7.5 Function definitions

The following functions are useful for describing various VMP updates used throughout

this chapter.

F ⎛
⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦
⎞
⎠ ≡ 1

4tr ({vec−1(a2)}−1 [a1a⊺1 {vec−1(a2)}−1 − 2I]) ,
where a1 and a2 are scalars.

G ⎛⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦ ;b,C
⎞
⎠ ≡ (a1 + n + 1

2
){vec−1(a2)}−1 ,

where a1 is a scalar and a2 is an n2 × 1 vector.

H⎛
⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦ ;b,C
⎞
⎠ ≡ bb⊺ + {vec−1 (a2)}−1 [ba⊺1C⊺ + 1

4Ca1a
⊺
1C
⊺ {vec−1 (a2)}−1 − 1

2CC⊺] ,
where a1 is a q × 1 vector, a2 a q2 × 1 vector, b a p × 1 vector and C a p × q matrix.

I ⎛⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
b1

b2

⎤⎥⎥⎥⎥⎦
⎞
⎠ ≡ a2(a21 − 2a2)

4a32
+ b2(b21 − 2b2)

4b32
− a1b1
2a2b2

,

where a1, a2, b1 and b2 are scalars.

J ⎛
⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦ ; b, c
⎞
⎠ ≡ −1

8 [{vec−1(a2)}−1 a1]
b
[{vec−1(a2)}−1 a1]

c
+ [{vec−1(a2)}−1]

bc
,
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where a1 is a q × 1 vector, a2 is a q2 × 1 vector and b and c both scalars.

K⎛
⎝
⎡⎢⎢⎢⎢⎣
a1

a2

⎤⎥⎥⎥⎥⎦
⎞
⎠ ≡ a21 − 2a2

4a22
,

where a1 and a2 are scalars.

7.6 The variational message passing algorithm

Our goal is to obtain the mean field approximation to the joint posterior density function:

p(θ1, . . . , θNhid
∣x) ≈ q(θ1) . . . q(θNhid

) (7.4)

where θ1, . . . , θNhid
are the parameters or hidden nodes and x contains the data or evidence

nodes in the corresponding statistical model. VMP aims to obtain the optimal q-densities

through an iterative scheme concerned with updating messages of the form:

mfj → θi and mθi → fj for each i ∈ neighbours (j) , 1 ≤ j ≤ Nfac.

The general iterative VMP scheme, labelled Algorithm 10, can be used to solve the optimal

q densities, by updating such messages.

Convergence of Algorithm 10 is assessed by monitoring successive values of the lower

bound on the marginal log-likelihood log p(x; q) and stopping once the successive differ-

ences are very small. The lower bound on the marginal log-likelihood is given by

log p(x; q) = Eq

⎡⎢⎢⎢⎢⎣
Nfac∑
j=1

log fj (θneighbours(j)) −
Nhid∑
i=1

log q(θi)
⎤⎥⎥⎥⎥⎦ . (7.5)

Within Algorithm 10, if neighbours(j)/{i} = ∅, the empty set, the expression

∏
i′ ∈ neighbours(j)/{i}

mθi′ → fj(θi′) mfj → θi′ (θi′)

is taken to be 1, since there would exist no i′. Integration is replaced by summation if

θneighbours(j)/{i} in Step 2 (a) contains discrete random variables. It is easier to work

with messages appearing under the same product sign to be from the same exponential

family. This is referred to as conjugate VMP. However, VMP is a general scheme and not

necessarily restricted to conjugate situations. When conjugacy exists within the message

updates, the functional forms of these messages are exposed and it becomes clear that

the parameters of these messages are inter-related, much like what happens with MFVB.

198



7.6. THE VARIATIONAL MESSAGE PASSING ALGORITHM

Step 1: Initialise

mfj → θi(θi) for all i ∈ neighbours(j), 1 ≤ j ≤ Nfac, to be arbitrary density

functions.

Step 2: Cycle

(a) For i ∈ neighbours(j), 1 ≤ j ≤ Nfac,

mθi → fj(θi) ← ∏
{j′ ≠ j ∶ i ∈ neighbours(j′)}

mfj′ → θi(θi),

(b) For i ∈ neighbours(j), 1 ≤ j ≤ Nfac,

mfj → θi(θi) ← exp

⎡⎢⎢⎢⎢⎢⎣∫
⎛⎜⎜⎝
1

Z
∏

i′ ∈ neighbours(j)/{i}
mθi′ → fj(θi′) mfj → θi′ (θi′)

⎞⎟⎟⎠
× log fj (θneighbours(j))dθneighbours(j)/{i}] ,

where Z = ∫ ∏
i′ ∈ neighbours(j)/{i}

mθi′ → fj(θi′) mfj → θi′ (θi′)dθneighbours(j)/{i}.
until all messages converge.

Step 3: For 1 ≤ i ≤ Nhid,

q∗(θi) ← ∏
{j ∶ i ∈ neighbours(j)}

m∗
fj → θi(θi)/∫ ∏

{j ∶ i ∈ neighbours(j)}

m∗
fj → θi(θi)dθi.

Algorithm 10: The general variational message passing algorithm.
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p(Σ)

Σ

p(y|ν,Σ)

ν

p(ν|σ2)

σ2

p(σ2|a)

a

p(a)

Figure 7.3: Factor graph corresponding to the marginal longitudinal semiparametric re-
gression model in (2.15).

These updates begin to exhibit particular patterns and remembering these patterns allows

one to streamline the calculations of VMP. This is especially useful for larger complex

statistical models. Examples of these patterns are given in Appendix 7.4 for the two models

considered in the following sections. In addition, when computing the VMP updates in

Algorithm 10, it is appropriate to work with the natural parameter forms of exponential

family density functions.

7.7 Examples

We consider two regression examples used throughout this thesis, namely the marginal

longitudinal semiparametric regression model (2.15) given in Chapter 2 and the mixture

model with measurement error (6.4) given in Chapter 6. We provide detail on the VMP

methodology specifically for these two models.

7.7.1 Marginal longitudinal semiparametric regression model

The factor graph corresponding to model (2.15) is given in Figure 7.3, where the circular

nodes correspond to each of the random variables, vectors or matrices and the solid squares

represent each of the factors in the model. To make notation simple we have combined

the mean function coefficients into a single vector, i.e.,

ν ≡ ⎡⎢⎢⎢⎢⎣
β

u

⎤⎥⎥⎥⎥⎦ .
We aim to obtain a mean field approximation to the joint posterior density function:

p(ν,a,σ2,Σ ∣y) ≈ q(ν)q(a)q(σ2)q(Σ).
Following the rules of Algorithm 10 and referring to the factor graph in Figure 7.3 for the

stochastic node Σ, the two factor to node messages to initialise are mp(Σ) →Σ(Σ) and

mp(y∣ν,Σ) →Σ (Σ). We can set these to be any density functions, however to make the

200



7.7. EXAMPLES

calculations simple and impose conjugacy we choose them to be the Inverse-Wishart(n,In)
density function. This can be written as:

mp(Σ) →Σ(Σ) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec (Σ−1)

⎤⎥⎥⎥⎥⎦
⊺
ηp(Σ) →Σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
mp(y∣ν,Σ) →Σ (Σ) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec (Σ−1)

⎤⎥⎥⎥⎥⎦
⊺
ηp(y∣ν,Σ) →Σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the natural parameter vectors ηp(Σ) →Σ and ηp(y∣ν,Σ) →Σ are initialised to be

ηp(Σ) →Σ ← ⎡⎢⎢⎢⎢⎣
−n − 1

−1
2vec (In)

⎤⎥⎥⎥⎥⎦ , ηp(y∣ν,Σ) →Σ ← ⎡⎢⎢⎢⎢⎣
−n − 1

−1
2vec (In)

⎤⎥⎥⎥⎥⎦ .
The natural parameter forms of the density functions used for this model were given in

Section 7.3. Step 2 (a) of Algorithm 10 is concerned with updating the stochastic node

to factor messages. If we begin with the message mΣ→ p(Σ)(Σ), we notice that the only

other neighbour of Σ apart from p(Σ) is p(y∣ν,Σ). This means that mΣ→ p(Σ)(Σ) has

the update

mΣ→ p(Σ) (Σ) ← mp(y∣ν,Σ) →Σ (Σ)
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec (Σ−1)

⎤⎥⎥⎥⎥⎦
⊺
ηΣ→ p(Σ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

ηΣ→ p(Σ) ← ηp(y∣ν,Σ) →Σ.

Similarly, mΣ→ p(y∣ν,Σ) (Σ) ← mp(Σ) →Σ (Σ), which corresponds to the natural pa-

rameter update:

ηΣ→ p(y∣ν,σ2) ← ηp(Σ) →Σ.

Step 2 (b) of Algorithm 10 is concerned with updating the factor to stochastic node

messages and focusing on stochastic node Σ which involves updating mp(Σ) →Σ(Σ) and
mp(y∣ν,Σ) →Σ(Σ). The first factor to stochastic node message to update ismp(Σ) →Σ(Σ).
Since the only neighbour of factor p(Σ) is the stochastic node Σ this message has the fol-
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lowing form

mp(Σ) →Σ (Σ) ← exp{log p(Σ)}
∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec (Σ−1)

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2 (AΣ + n + 1)
−1
2vec (BΣ)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

This means that

ηp(Σ) →Σ ← ⎡⎢⎢⎢⎢⎣
−1
2 (AΣ + n + 1)
−1
2vec (BΣ)

⎤⎥⎥⎥⎥⎦
and remains fixed at this value as it doesn’t depend on any other messages. The next

message has the form:

mp(y∣ν,Σ) →Σ (Σ) ← exp{∫
Rv
mν → p(y∣ν,Σ) (ν) ×mp(y∣ν,Σ) → ν (ν)
× log p(y∣ν,Σ) d (ν)} ,

where v = p + ∑d
	=1K	, the number of columns in C = [X ∣Z]. Further breakdown of

mp(y∣ν,Σ) →Σ (Σ) gives

mp(y∣ν,Σ) →Σ (Σ)
∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rv

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺
(ηp(ν ∣σ2) → ν +ηp(y∣ν,Σ) → ν)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec(Σ−1)

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

−m
2

−1
2

m∑
i=1

vec{(yi −Ciνi) (yi −Ciνi)⊺}
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
dν

⎤⎥⎥⎥⎥⎥⎦

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
log ∣Σ∣

vec(Σ−1)
⎤⎥⎥⎥⎥⎦
⊺
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m
2

−1
2

m∑
i=1

vec{∫
Rv

(yi −Ciνi) (yi −Ciνi)⊺
×pNnat,vec

(ηp(ν ∣σ2) → ν

+ηp(y∣ν,Σ) → ν)dν}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where pNnat,vec

(x; [η⊺1 η⊺2,vec]⊺) is the Nnat,vec(η1,η2,vec) density function in x. Further

detail on this notation is given previously in Sections 7.3 and 7.4. Using Primitive 7.4.4
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we get

mp(y∣ν,Σ) →Σ (Σ)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
log ∣Σ∣

vec(Σ−1)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m
2

−1
2

m∑
i=1

vec{H(ηp(ν ∣σ2) → ν

+ηp(y∣ν,Σ) → ν ; yi, Ci)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where the function H is defined in Section 7.5. This corresponds to the natural parameter

update having the form

ηp(y∣ν,Σ) →Σ ←
⎡⎢⎢⎢⎢⎢⎣

−m
2

−1
2

m∑
i=1

vec{H(ηp(ν ∣σ2) → ν +ηp(y∣ν,Σ) → ν ; yi, Ci)}
⎤⎥⎥⎥⎥⎥⎦
.

Step 2 (b) is now finished for the updates corresponding to the stochastic node Σ. Once

convergence is achieved for the messages in Steps 2 (a) and (b) corresponding to all

stochastic nodes in factor graph (7.3), we move on to Step 3 of Algorithm 10. For Σ this

involves the update:

η∗q(Σ) ← η∗
p(ν ∣σ2) → (ν) +η∗p(y∣ν,Σ) → (ν).

This means that

q∗(Σ) is the IWnat (η∗q(Σ),1, η∗q(Σ),2) density function in Σ

and can also be transformed back to the original parameters, such as those used in Chapter

2, by writing this as the

Inverse-Wishart{−(2η∗q(Σ),2 + n + 1) , −2vec (η∗q(Σ),1)} density function in Σ.

Algorithm 11 gives the updates for all stochastic nodes in Figure 7.3 and the derivation is

given in Appendix 7.A. The lower bound on the marginal log-likelihood for this example

is derived by using the expression given in (7.5) and gives the same result as in expression

(2.17) in Chapter 2. Therefore, once the natural parameters are transformed back to the

original parameters, convergence is assessed in the same manner as before.
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Initialise:

ηp(a�) → a�
← [−2−1 ] ; ηp(σ2

� ∣a�) → a�
← [−2−1 ] ; ηp(σ2

� ∣a�) → σ2
�
← [−2−1 ] ;

ηp(ν ∣σ2) → σ2
�
← [−2−1 ] ; ηp(ν ∣σ2) → ν ← [ 0v−1

2vec (Iv) ] ;
ηp(y∣ν,Σ) → ν ← [ 0v−1

2vec (Iv) ] ; ηp(y∣ν,Σ) →Σ ← [ −n − 1−1
2vec (In) ] ;

ηp(Σ) →Σ ← [ −n − 1−1
2vec (In) ]

Cycle:

(a) ηa� → p(a�) ← ηp(σ2
� ∣a�) → a�

; ηa� → p(σ2
� ∣a�) ← ηp(a) → a

ησ2
� → p(σ2

� ∣a�) ← ηp(ν ∣σ2) → σ2
�

; ησ2
� → p(ν ∣σ2) ← ηp(σ2

� ∣a�) → σ2
�

ην → p(ν ∣σ2) ← ηp(y∣ν,Σ) → ν ; ην → p(y∣ν,σ2) ← ηp(ν ∣σ2) → ν

ηΣ→ p(y∣ν,σ2) ← ηp(Σ) →Σ ; ηΣ→ p(Σ) ← ηp(y∣ν,Σ) →Σ

(b) ηp(σ2
� ∣a�) → a�

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
1

+1
(η

p(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηp(σ2
� ∣a�) → σ2

�
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2

−(ηp(a�) → a�
+η

p(σ2
� ∣a�) → a�

)
1

+1
(ηp(a�) → a�

+η
p(σ2

� ∣a�) → a�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(ν ∣σ2) → σ2

�
← ⎡⎢⎢⎢⎣

−1
2K	−1

2F (ηp(y∣ν,Σ) → u�
+ηp(ν ∣σ2) → u�

)
⎤⎥⎥⎥⎦

ηp(ν ∣σ2) → ν

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1
2vec

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F −1 0

0 blockdiag
1≤	≤d

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
(η

p(σ2
� ∣a�) → σ2

�
+η

p(ν ∣σ2) → σ2
�
)
1

+1
(η

p(σ2
� ∣a�) → σ2

�
+η

p(ν ∣σ2) → σ2
�
)
2

⎞⎟⎟⎠IK�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(y∣ν,Σ) → ν ←

⎡⎢⎢⎢⎢⎢⎣
C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ ; n)}y

1
2vec [C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ ; n)}C]

⎤⎥⎥⎥⎥⎥⎦
ηp(y∣ν,Σ) →Σ ← ⎡⎢⎢⎢⎢⎣

−m
2

−1
2 ∑m

i=1 vec{H(ηp(ν ∣σ2) → ν +ηp(y∣ν,Σ) → ν ; yi , Ci)}
⎤⎥⎥⎥⎥⎦

until the increase in log p(y; q) is negligible.
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ηp(y∣ν,Σ) →Σ ← ⎡⎢⎢⎢⎢⎣
−m

2

−1
2 ∑m

i=1 vec{H(ηp(ν ∣σ2) → ν +ηp(y∣ν,Σ) → ν ; yi , Ci)}
⎤⎥⎥⎥⎥⎦

η∗
q(ν) ← η∗

p(ν ∣σ2) → (ν)
+η∗

p(y∣ν,Σ) → (ν)

η∗
q(Σ) ← η∗

p(y∣ν,Σ) →Σ
+η∗

p(Σ) →Σ

For 1 ≤ 
 ≤ d ∶
η∗

q(a�)
← η∗

p(a�) → a�
+η∗

p(σ2
� ∣a�) → a�

η∗
q(σ2

� )
← η∗

p(σ2
� ∣a�) → σ2

�
+η∗

p(ν ∣σ2) → σ2
�

Algorithm 11: VMP algorithm for determining the natural parameter vectors η∗
q(a�)

,

η∗
q(σ2

� )
, η∗

q(ν) and η∗
q(Σ) of the optimal density functions q∗(ν), q∗(σ2), q∗(a) and

q∗(Σ) for approximate inference in Model (2.15).

7.7.2 Mixture model with measurement error

The factor graph corresponding to model (6.4) is given in Figure 7.4. We impose the same

mean field approximations on the joint posterior density functions as given in Chapter 6.

Algorithm 12 gives the VMP updates corresponding to this model. Details of the deriva-

tions for the updates given in Algorithm 12 are given in Appendix 7.B. In order to impose

conjugacy, we initialise the messages corresponding to stochastic nodes ax, (σx)2, σ2
ε , aε,

σ2
o and ao to be the Inverse-Gamma (1,1) density function, corresponding to the natural

parameter vector being set to [−2 − 1]⊺. The messages corresponding to the stochastic

nodes xunobs and μx are initialised to be the N (0,1) density function, which corresponds

to the natural parameter vector begin set to [0 − 1
2
]⊺. The messages relating to the

columns in node a are initialised to be the Multinomial (ai1, . . . , aiK ; 1, 1
K , . . . , 1

K
) density

function, where K is the number of mixture components used. This corresponds to the

natural parameters being set to log (1/K) , . . . , log (1/K). The messages relating to ω are

initialised to be the Dirichlet (ω1, . . . , ωK ; 2, . . . ,2) density function and this corresponds

to the natural parameters begin set to 1, . . . ,1. Lastly, the messages corresponding to α

and β are initialised to be the N (0d,Id) density function, where d is the dimension of

the corresponding stochastic vector node, and this corresponds to the natural parameter

vector being set to [0d − 1
2vec (Id)]⊺.
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Initialise:

ηp(ax
k) → ax

k
← [−2−1 ] ; ηp{(σx

k)
2∣ax

k} → ax
k
← [−2−1 ] ; ηp(μx

k) → μx
k
← [ 0

−1
2

]

ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2 ← [−2−1 ] ; ηp{x∣a,μx, (σx)2} → (σx
k)

2 ← [−2−1 ] ; ηp(ωk) → ωk
← 1

ηp{x∣a,μx, (σx)2} → aik
← log(1/K); ηp{x∣a,μx, (σx)2} → μx

k
← [ 0

−1
2

]

ηp{x ∣a,μx, (σx)2} → xunobs,i
← [ 0

−1
2

] ; ηp(aik ∣ωk) → aik
← log(1/K)

ηp(ak ∣ωk) → ωk
← 1; ηp(o∣α,x, σ2

o) → σ2
o
← [−2−1 ] ; ηp(α) → α ← [ 02

−1
2vec (I2) ]

ηp(σ2
o ∣ao) → ao

← [−2−1 ] ; ηp(o∣α,x, σ2
o) → xunobs,i

← [ 0

−1
2

] ; ηp(σ2
o ∣ao) → σ2

o
← [−2−1 ]

ηp(o∣α,x, σ2
o) → α ← [ 02

−1
2vec (I2) ] ; ηp(ao) → ao

← ⎡⎢⎢⎢⎣
−2
−1

⎤⎥⎥⎥⎦
ηp(β) → β ← [ 03

−1
2vec (I3) ] ; ηp(y∣β,x, σ2

ε) → xunobs,i
← [ 0

−1
2

]

ηp(y∣β,x, σ2
ε) → σ2

ε
← [−2−1 ] ; ηp(aε) → aε

← [ −3/2
−1/A2

ε

] ; ηp(σ2
ε ∣aε) → aε

← [−2−1 ]

ηp(y∣β,x, σ2
ε) → β ← [ 03

−1
2vec (I3) ] ; ηp(σ2

ε ∣aε) → σ2
ε
← [−2−1 ]

Cycle:

(a) ηax
k → p(ax

k) ← ηp{(σx
k)

2∣ax
k} → ax

k
; ηax

k → p{(σx
k)

2∣ax
k}

← ηp(ax
k) → ax

k

η(σx
k)

2 → p{(σx
k)

2∣ax
k}

← ηp{x∣a,μx, (σx)2} → (σx
k)

2

η(σx
k)

2 → p{x∣a,μx, (σx
k)

2} ← ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2

ηaik → p{x∣a,μx, (σx
k)

2} ← ηp(aik ∣ωk) → aik
; ηaik → p(aik ∣ωk) ← ηp{x∣a,μx, (σx)2} → aik

ηωk → p(aik ∣ωk) ← ηp(ωk) → ωk
; ηωk → p(ωk) ← ηp(ak ∣ωk) → ωk

ημx
k → p{x∣a,μx, (σx

k)
2} ← ηp(μx

k) → μx
k
; ημx

k → p(μx
k) ← ηp{x∣a,μx, (σx)2} → μx

k

ηα→ p(o∣α,x, σ2
o)
← ηp(α) → α; ηα→ p(α) ← ηp(o∣α,x, σ2

o) → α

ησ2
o → p(o∣α,x, σ2

o)
← ηp(σ2

o ∣ao) → σ2
o
; ησ2

o → p(σ2
o ∣ao) ← ηp(o∣α,x, σ2

o) → σ2
o

ηao → p(σ2
o ∣ao) ← ηp(ao) → ao

; ηao → p(ao) ← ηp(σ2
o ∣ao) → ao

ηxunobs,i → p{x∣a,μx, (σx)2} ← ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i
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ηxunobs,i → p(y∣β,x, σ2
ε)
← ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

ηxunobs,i → p(o∣α,x, σ2
o)
← ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

ηβ → p(y∣β,x, σ2
ε)
← ηp(β) → β; ηβ → p(β) ← ηp(y∣β,x, σ2

ε) → β

ησ2
ε → p(y∣β,x, σ2

ε)
← ηp(σ2

ε ∣aε) → σ2
ε
; ησ2

ε → p(σ2
ε ∣aε) ← ηp(y∣β,x, σ2

ε) → σ2
ε

ηaε → p(σ2
ε ∣aε) ← ηp(aε) → aε

; ηaε → p(aε) ← ηp(σ2
ε ∣aε) → aε

(b) ηp(ax
k) → ax

k
← [ −3/2

−1/(Ax
k)2 ] ; ηp(μx

k) → μx
k
← [ μμ σ2

μ−1/2σ2
μ
]

ηp{(σx
k)

2∣ax
k} → ax

k
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2 ←
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(ax

k) → ax
k
+η

p{(σx
k)

2∣ax
k} → ax

k
)
1

+1
(ηp(ax

k) → ax
k
+η

p{(σx
k)

2∣ax
k} → ax

k
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ηp{x ∣a,μx, (σx)2} → xunobs,i

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2 exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

× (ηp(μx
k) → μx

k
+η

p{x∣a,μx, (σx)2} → μx
k
)
1

(ηp(μx
k) → μx

k
+η

p{x∣a,μx, (σx)2} → μx
k
)
2

×(ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1

+1
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2

−1
2 exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

× (ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1

+1
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(aik ∣ωk) → aik

← (ψ {(ηp(ωk) → ωk
+ ηp(aik ∣ωk) → ωk

)
k
+ 1}

−ψ [ K∑
k=1

{(ηp(ωk) → ωk
+ ηp(aik ∣ωk) → ωk

)
k
+ 1}])

ηp(aik ∣ωk) → ωk
← exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
)

ηp(ωk) → ωk
← αk − 1 ; ηp(β) → β ← ⎡⎢⎢⎢⎢⎣

0

−1
2vec( 1

σ2
β

I3)
⎤⎥⎥⎥⎥⎦
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ηp(o∣α,x, σ2
o) → xunobs,i

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(σ2

o ∣ao) → σ2
o
+η

p(o∣α,x, σ2
o) → σ2

o
)
1

+1
(η

p(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2oxunobs,i

(ηp(α1) → α1
+η

p(o∣α,x, σ2
o) → α1

)
1

(ηp(α1) → α1
+η

p(o∣α,x, σ2
o) → α1

)
2

+J (ηp(α) → α +ηp(o∣α,x, σ2
o) → α; 1,2)}

−(ηp(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
1

+1
2(η

p(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
2

×K(ηp(α1) → α1
+ηp(o∣α,x, σ2

o) → α1
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(o∣α,x, σ2

o) → α

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(σ2

o ∣ao) → σ2
o
+η

p(o∣α,x, σ2
o) → σ2

o
)
1

+1
(η

p(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
2

×E nat
q(xunobs) (X̃)⊺ o

−(ηp(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
1

+1
2(η

p(σ2
o ∣ao) → σ2

o
+η

p(o∣α,x, σ2
o) → σ2

o
)
2

× vec{E nat
q(xunobs) (X̃⊺X̃)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(α) → α ← [ 0

−1
2vec ( 1

σ2
α
I2) ]

ηp(o∣α,x, σ2
o) → σ2

o
← ⎡⎢⎢⎢⎢⎣

−n
2

−1
2E

nat
q(xunobs,α) (∥o − X̃α∥2)

⎤⎥⎥⎥⎥⎦

ηp(σ2
o ∣ao) → σ2

o
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2

−(ηp(ao) → ao
+η

p(σ2
o ∣ao) → ao

)
1

+1
(ηp(ao) → ao

+η
p(σ2

o ∣ao) → ao
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηp(σ2
o ∣ao) → ao

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp(y∣β,x, σ2

ε) → σ2
ε
← ⎡⎢⎢⎢⎢⎣

−n
2

−1
2E

nat
q(xunobs,β) (∥y −Xβ∥2)

⎤⎥⎥⎥⎥⎦

ηp(σ2
ε ∣aε) → aε

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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ηp{x∣a,μx, (σx)2} → (σx
k)

2

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

× I {(ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

+ηp{x ∣a,μx, (σx)2} → xunobs,i
) , (ηp(μx

k) → μx
k

+ηp{x∣a,μx, (σx)2} → μx
k
)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ηp{x∣a,μx, (σx)2} → aik

← −1
2 [log{−(ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2 +ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2
}

−ψ {−(ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2 +ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1
− 1}

−
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1

+1
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭× I {(ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

+ηp{x ∣a,μx, (σx)2} → xunobs,i
) ,

(ηp(μx
k) → μx

k
+ηp{x∣a,μx, (σx)2} → μx

k
)}]

ηp{x∣a,μx, (σx)2} → μx
k
←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2 exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×{E nat
q(xunobs) (x)}i

× (ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1

+1
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2

−1
2 exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

× (ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
1

+1
(η

p{(σx
k)

2∣ax
k} → (σ

x
k)

2+ηp{x∣a,μx, (σx)2} → (σx
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηp(y∣β,x, σ2
ε) → β ←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(σ2

ε ∣aε) → aε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
1

+1
(η

p(σ2
ε ∣aε) → aε

+η
p(y∣β,x, σ2

ε) → σ2
ε
)
2

×E nat
q(xunobs) (X)⊺ y

−(ηp(σ2
ε ∣aε) → σ2

ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
1

+1
2(η

p(σ2
ε ∣aε) → σ2

ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
2

×vec{E nat
q(xunobs) (X⊺X)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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ηp(σ2
ε ∣aε) → σ2

ε
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2

−(ηp(aε) → aε
+η

p(σ2
ε ∣aε) → aε

)
1

+1
(ηp(aε) → aε

+η
p(σ2

ε ∣aε) → aε
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; ηp(aε) → aε

← ⎡⎢⎢⎢⎢⎣
−3
2

− 1
A2

ε

⎤⎥⎥⎥⎥⎦

ηp(y∣β,x, σ2
ε) → xunobs,i

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(σ2

ε ∣aε) → σ2
ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
1

+1
(η

p(σ2
ε ∣aε) → σ2

ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2yxunobs,i

(ηp(βx) → βx
+η

p(y∣β,x, σ2
ε) → βx

)
1

(ηp(βx) → βx
+η

p(y∣β,x, σ2
ε) → βx

)
2−J (ηp(β) → β +ηp(y∣β,x, σ2

ε) → β; 1,3)
−cxunobs,i J (ηp(β) → β +ηp(y∣β,x, σ2

ε) → β; 2,3)}

1
4

(η
p(σ2

ε ∣aε) → σ2
ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
1

+1
(η

p(σ2
ε ∣aε) → σ2

ε
+η

p(y∣β,x, σ2
ε) → σ2

ε
)
2

×(ηp(βx) → βx
+η

p(y∣β,x, σ2
ε) → βx

)
1

(ηp(βx) → βx
+η

p(y∣β,x, σ2
ε) → βx

)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
until the increase in log p(y; q) is negligible.

η∗
q(α) ← η∗

p(o∣α,x, σ2
o) → α

+η∗
p(α) → α

; η∗
q(σ2

o)
← η∗

p(o∣α,x, σ2
o) → σ2

o
+η∗

p(σ2
o ∣ao) → σ2

o

η∗
q(ao) ← η∗

p(σ2
o ∣ao) → ao

+η∗
p(ao) → ao

For 1 ≤ k ≤K ∶ η∗
q(ax

k)
← η∗

p(ax
k) → ax

k
+η∗

p{(σx
k)

2∣ax
k} → ax

k

η∗
q {(σx

k)
2}

← η∗
p{(σx

k)
2∣ax

k} → (σ
x
k)

2 +η∗p{x∣a,μx, (σx)2} → (σx
k)

2

η∗
q(μx

k)
← η∗

p{x∣a,μx, (σx)2} → μx
k

+η∗
p(μx

k) → μx
k

For 1 ≤ i ≤ n and 1 ≤ k ≤K ∶ η∗
q(aik)

← η∗
p{x∣a,μx, (σx)2} → aik

+ η∗
p(aik ∣ωk) → aik

η∗
q(ωk)

← η∗
p(aik ∣ωk) → ωk

+ η∗
p(ωk) → ωk

η∗
q(β) ← η∗

p(y∣β,x, σ2
ε) → β

+η∗
p(β) → β

; η∗
q(σ2

ε)
← η∗

p(y∣β,x, σ2
ε) → σ2

ε
+η∗

p(σ2
ε ∣aε) → σ2

ε

η∗
q(aε) ← η∗

p(σ2
ε ∣aε) → aε

+η∗
p(aε) → aε

For 1 ≤ i ≤ nunobs ∶
η∗

q(xunobs,i)
← η∗

p{x∣a,μx, (σx)2} → xunobs,i
+η∗

p(y∣β,x, σ2
ε) → xunobs,i+η∗

p(o∣α,x, σ2
o) → xunobs,i

Algorithm 12: VMP algorithm for determining the natural parameter vectors of the optimal
density functions for approximate inference in Model (6.4).
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ax
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Figure 7.4: Factor graph corresponding to the mixture model with measurement error given
in (6.4).

7.8 Discussion

The general VMP algorithm, presented as Algorithm 10, is a useful guide, in terms of

notation, for representing the three main phases in a VMP scheme. The two examples in

this chapter provided further details on the use of natural parameter forms and primitives

for certain density functions when using VMP. The extension of VMP to arbitrarily large

models may not be immediately obvious from the examples discussed here, however the

ease by which certain primitives and results can be used for larger and more complex

models makes VMP an attractive alternative to MFVB.

For the interested reader, the efficiency of the VMP approach can be seen from the

examples given in Wand (2015). Wand (2015) defines the notion of a fragment, which is

a sub-graph of a factor graph that consists only of a single factor and its corresponding

stochastic neighbor nodes. These fragments represent the underlying structure of a wide

range of large semiparametric regression models and gives VMP the advantage of being

more amenable to modulatization and extension to larger compex models.
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7.A Derivation of Algorithm 11

In this section we describe in detail, the derivations for Algorithm 11. These derivations

have made use of the natural parameter forms, primitives and functions defined in Sections

7.3, 7.4 and 7.5.

7.A.1 Step 1: Initialise factor to stochastic node messages

The derivation of the updates corresponding to the Σ node in Figure 7.3 were given

in section 7.7.1. Here we give the derivations of the updates corresponding to the rest

of the nodes in the factor graph. The Inverse-Gamma messages are initialised to be the

Inverse-Gamma(1,1) density function and the multivariate normal messages are initialised

to be the N(0v,Iv) density function, where v = p+∑d
	=1K	. These messages can be written

as

mp(y∣ν,Σ) → ν (β,u) ← exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦ηp(y∣ν,Σ) → ν

⎫⎪⎪⎬⎪⎪⎭
mp (ν ∣σ2) → ν (β,u) ← exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦ηp(ν ∣σ2) → ν

⎫⎪⎪⎬⎪⎪⎭
mp (ν ∣σ2) → σ2 (σ2) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺
ηp(ν ∣σ2) → σ2

�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
mp (σ2∣a) → σ2 (σ2) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

� ∣a�) → σ2
�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
mp (σ2∣a) → a (a) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

� ∣a�) → a�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
mp(a) → a (a) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺
ηp(a�) → a�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and these settings correspond to the natural parameter vectors having the following initial

values:

ηp(y∣ν,Σ) → ν ← ⎡⎢⎢⎢⎢⎣
0v−1

2vec (Iv)
⎤⎥⎥⎥⎥⎦ , ηp(ν ∣σ2) → ν ← ⎡⎢⎢⎢⎢⎣

0v−1
2vec (Iv)

⎤⎥⎥⎥⎥⎦ ,
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ηp(ν ∣σ2) → σ2
�
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ , ηp(σ2
� ∣a�) → σ2

�
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ,

ηp(σ2
� ∣a�) → a�

← ⎡⎢⎢⎢⎢⎣
−2
−1

⎤⎥⎥⎥⎥⎦ , ηp(a�) → a�
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ .

7.A.2 Step 2 (a): Update stochastic node to factor messages

The next stochastic node to factor message to update is mν → p(y∣ν,Σ) (ν), and since the

only other neighbour of ν apart from p(y∣ν,Σ) is p(ν ∣σ2), this message takes the form

mν → p(y∣ν,Σ) (ν) ←mp (ν ∣σ2) → ν (ν)
and can be written as

mν → p(y∣ν,Σ) (ν) ← exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦ηp(ν ∣σ2) → ν

⎫⎪⎪⎬⎪⎪⎭
where

ην → p(y∣ν,σ2) ← ηp(ν ∣σ2) → ν .

Similarly,

mν → p(ν ∣σ2) (ν) ← mp(y∣ν,Σ) → ν (ν)
mσ2 → p(ν ∣σ2) (σ2) ← mp (σ2∣a) → σ2 (σ2)
mσ2 → p(σ2∣a) (σ2) ← mp (ν ∣σ2) → σ2 (σ2)
ma→ p(σ2∣a) (a) ← mp(a) → a (a)
ma→ p(a) (a) ← mp (σ2∣a) → a (a)

which is equivalent to the following natural parameter updates:

ην → p(ν ∣σ2) ← ηp(y∣ν,Σ) → ν

ησ2
� → p(ν ∣σ2) ← ηp(σ2

� ∣a�) → σ2
�

ησ2
� → p(σ2

� ∣a�) ← ηp(ν ∣σ2) → σ2
�

ηa� → p(σ2
� ∣a�) ← ηp(a�) → a�

ηa� → p(a�) ← ηp(σ2
� ∣a�) → a�
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7.A.3 Step 2 (b): Update factor to stochastic node messages

The next factor to stochastic node message to update is mp(y∣ν,Σ) → ν(ν) and takes the

form

mp(y∣ν,Σ) → ν(ν) ← exp{∫
Rn×n

1

Z
mΣ→ p(y∣ν,Σ)(Σ) ×mp(y∣ν,Σ) →Σ(Σ)

× log p(y∣ν,Σ)dΣ}
where Z is the normalising constant.

mp(y∣ν,Σ) → ν(ν)

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rn×n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

log ∣Σ∣
vec (Σ−1)

⎤⎥⎥⎥⎥⎦
⊺
(ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

C⊺ (Im ⊗Σ−1)y
1
2vec (C⊺ (Im ⊗Σ−1)C)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
dΣ

⎤⎥⎥⎥⎥⎥⎦

= exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C⊺ {Im ⊗∫
Rn×nΣ

−1pIWnat
(Σ; ηp(Σ) →Σ

+ηp(y∣ν,Σ) →Σ)dΣ}y
1
2vec [C⊺ {Im ⊗∫

Rn×nΣ
−1pIWnat

(Σ; ηp(Σ) →Σ

+ηp(y∣ν,Σ) →Σ)dΣ}C]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ)}y
1
2vec [C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ)}C]

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

This means that the natural parameter vector has the following update:

ηp(y∣ν,Σ) → ν ←
⎡⎢⎢⎢⎢⎢⎣

C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ)}y
1
2vec [C⊺ {Im ⊗ G (ηp(Σ) →Σ +ηp(y∣ν,Σ) →Σ)}C]

⎤⎥⎥⎥⎥⎥⎦
.

The next message begins with

mp (ν ∣σ2) → ν(ν) ← exp{∫
Rd≥0

1

Z
mσ2 → p(ν ∣σ2) (σ2) ×mp (ν ∣σ2) → σ2 (σ2)

× log p(ν ∣σ2)dσ2}
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Collecting like terms in mσ2 → p(ν ∣σ2)(σ2) and mp (ν ∣σ2) → σ2(σ2) gives:

mp (ν ∣σ2) → ν(ν)
∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rd≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺
(ηp(σ2

� ∣a�) → σ2
�
+ηp(ν ∣σ2) → σ2

�
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1
2vec

⎛⎜⎝
⎡⎢⎢⎢⎢⎢⎣
F −1 0

0 blockdiag
1≤	≤d ( 1

σ2
�

IK�
)
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
dΣ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺

×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1
2vec

⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
F −1 0

0 blockdiag
1≤	≤d {(∫ ∞

0

1

σ2
	

pIGnat
(η⊕) dσ2

	)IK�
}
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where η⊕ ≡ ηp(σ2

� ∣a�) → σ2
�
+ηp(ν ∣σ2) → σ2

�
≡ [η⊕1 η⊕2 ]⊺ . Using Primitive 7.4.6, we get

= exp

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1
2vec

⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
F −1 0

0 blockdiag
1≤	≤d {(η⊕1 + 1

η⊕2
)IK�

}
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

This leads to the natural parameter update

ηp(ν ∣σ2) → ν ←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1
2vec

⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
F −1 0

0 blockdiag
1≤	≤d {(η⊕1 + 1

η⊕2
)IK�

}
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next we look at the factor to stochastic node message going from p(ν ∣σ2) to σ2:

mp (ν ∣σ2) → σ2(σ2) ← exp{∫
Rv

1

Z
mν → p(ν ∣σ2)(ν) ×mp (ν ∣σ2) → ν(ν)

× log p(ν ∣σ2)dν}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rv

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

ν

vec (νν⊺)
⎤⎥⎥⎥⎥⎦
⊺
(ηp(y∣ν,Σ) → ν +ηp(ν ∣σ2) → ν)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2K	−1

2∥u	∥2
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
dν

⎤⎥⎥⎥⎥⎥⎦
.
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Since ηp(y∣ν,Σ) → ν is a vector that can be partitioned by each of its components, i.e.,

ηp(y∣ν,Σ) → ν ≡
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηp(y∣ν,Σ) → β

ηp(y∣ν,Σ) → u1⋮
ηp(y∣ν,Σ) → ud

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and similarly for ηp(ν ∣σ2) → ν , then we can write mp (ν ∣σ2) → σ2(σ2) as

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺

× ⎡⎢⎢⎢⎢⎣
−1
2K	

−1
2∫

R
u�
∥u	∥2pNnat,vec

(u	 ; ηp(y∣ν,Σ) → u�
+ηp(ν ∣σ2) → u�

) du	

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Using Primitive 7.4.3, this becomes

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2K	−1

2F (ηp(y∣ν,Σ) → u�
+ηp(ν ∣σ2) → u�

)
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

and thus the natural parameter update is

ηp(ν ∣σ2) → σ2
�
← ⎡⎢⎢⎢⎢⎣

−1
2K	−1

2F (ηp(y∣ν,Σ) → u�
+ηp(ν ∣σ2) → u�

)
⎤⎥⎥⎥⎥⎦ .

The next message to update is

mp (σ2∣a) → σ2(σ2) ← exp{∫
Rd≥0

1

Z
ma→ p(σ2∣a)(a) ×mp (σ2∣a) → a(a)

× log p(σ2∣a)da}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rd≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log(a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺
(ηp(a�) → a�

+ηp(σ2
� ∣a�) → a�

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
−1/a	

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
da

⎤⎥⎥⎥⎥⎥⎦
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

−3/2
−∫ ∞

0

1

a	
pIGnat

(a	 ; ηp(a�) → a�
+ηp(σ2

� ∣a�) → a�
) da	

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The use of Primitive 7.4.6 gives

mp (σ2∣a) → σ2(σ2) ∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(a�) → a�

+η
p(σ2

� ∣a�) → a�
)
1

+1
(ηp(a�) → a�

+η
p(σ2

� ∣a�) → a�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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Therefore, the natural parameter update is given as

ηp(σ2
� ∣a�) → σ2

�
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(a�) → a�

+η
p(σ2

� ∣a�) → a�
)
1

+1
(ηp(a�) → a�

+η
p(σ2

� ∣a�) → a�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The second last factor to stochastic node message to update is

mp (σ2∣a) → a(a) ← exp{∫
Rd≥0

1

Z
mσ2 → p(σ2∣a)(σ2) ×mp (σ2∣a) → σ2(σ2)

× log p(σ2 ∣a)dσ2}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫Rd≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (σ2

	 )
1/σ2

	

⎤⎥⎥⎥⎥⎦
⊺
(ηp(ν ∣σ2) → σ2

�
+ηp(σ2

� ∣a�) → σ2
�
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d∑
	=1

⎡⎢⎢⎢⎢⎣
log (a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2−1/σ2
	

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
dσ2

	

⎤⎥⎥⎥⎥⎥⎦
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

−1
2

−∫ ∞
0

1

σ2
	

pIGnat
(σ2

	 ; ηp(ν ∣σ2) → σ2
�
+ηp(σ2

� ∣a�) → σ2
�
)dσ2

	

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Using Primitive 7.4.6, this becomes

exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log (a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
1

+1
(η

p(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

and so the natural parameter update is

ηp(σ2
� ∣a�) → a�

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−(ηp(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
1

+1
(η

p(ν ∣σ2) → σ2
�
+η

p(σ2
� ∣a�) → σ2

�
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The last factor to stochastic node message to update is mp(a) → a(a) and has the form

mp(a) → a(a) ← exp{ 1
Z log p(a)}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑
	=1

⎡⎢⎢⎢⎢⎣
log(a	)
1/a	

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
−1/A2

	

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

which means that the natural parameter update corresponding to this message is

ηp(a�) → a�
← ⎡⎢⎢⎢⎢⎣

−3/2
−1/A2

	

⎤⎥⎥⎥⎥⎦
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and remains fixed at this constant value since A	 is a hyperparameter to be specified by

the user.

7.A.4 Step 3 : Optimal q-densities

Once convergence is achieved from Steps 2(a) and (b) we get the optimal q-densities of

each stochastic node through:

η∗q(ν) ← η∗
p(ν ∣σ2) → (ν) +η∗p(y∣ν,Σ) → (ν)

η∗q(Σ) ← η∗p(y∣ν,Σ) →Σ +η∗p(Σ) →Σ

and for 1 ≤ 
 ≤ d:

η∗q(a�) ← η∗p(a�) → a�
+η∗

p(σ2
� ∣a�) → a�

η∗
q(σ2

� )
← η∗

p(σ2
� ∣a�) → σ2

�
+η∗

p(ν ∣σ2) → σ2
�
.
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7.B Derivation of Algorithm 12

This section gives the derivations for the updates given in Algorithm 12. Here, we also

make use of the natural parameter forms, primitives, results and functions defined in

Sections 7.3, 7.4 and 7.5.

7.B.1 Step 1: Initialise factor to stochastic node messages

We initialise the factor to stochastic node messages to be

m p(ax) → ax (ax) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log (axk)
1/axk

⎤⎥⎥⎥⎥⎦
⊺
ηp(ax

k) → ax
k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m

p{(σx)2 ∣ax} → ax (ax) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log (axk)
1/axk

⎤⎥⎥⎥⎥⎦
⊺
ηp{(σx

k)
2∣ax

k} → ax
k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m

p{(σx)2 ∣ax} → (σx)2 {(σx)2} ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/ (σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m

p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2} ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/ (σx

k)2
⎤⎥⎥⎥⎥⎦
⊺

×ηp{x∣a,μx, (σx)2} → (σx
k)

2}

m
p{x ∣a,μx, (σx)2} → a

(a) ← exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
ai1⋮
aiK

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎣

ηp{x∣a,μx, (σx)2} → ai1⋮
ηp{x∣a,μx, (σx)2} → aiK

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

m p(a ∣ω) → a (a) ← exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
ai1⋮
aiK

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎣
ηp(ai1∣ω1) → ai1⋮
ηp(aiK ∣ωK) → aiK

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
m

p{x ∣a,μx, (σx)2} → xunobs
(xunobs) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

×ηp{x ∣a,μx, (σx)2} → xunobs,i
}

m p(o ∣α,x, σ2
o) → xunobs

(xunobs) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
ηp(o∣α,x, σ2

o) → xunobs,i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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m
p{x ∣a,μx, (σx)2} → μx (μx) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
μk

μ2
k

⎤⎥⎥⎥⎥⎦
⊺
ηp{x∣a,μx, (σx)2} → μx

k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(μx) → μx (μx) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
μk

μ2
k

⎤⎥⎥⎥⎥⎦
⊺
ηp(μx

k) → μx
k

⎫⎪⎪⎪⎬⎪⎪⎪⎭

m p(a ∣ω) → ω (ω) ← exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣
log (ω1)⋮
log (ωK)

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎣
ηp(a1∣ω1) → ω1⋮
ηp(aK ∣ωK) → ωK

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

m p(ω) → ω (ω) ← exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣
log (ω1)⋮
log (ωK)

⎤⎥⎥⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎢⎢⎣
ηp(ω1) → ω1⋮
ηp(ωK) → ωK

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
m p(o ∣α,x, σ2

o) → α (α) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺
ηp(o∣α,x, σ2

o) → α

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(α) → α (α) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺
ηp(α) → α

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(o ∣α,x, σ2

o) → σ2
o
(σ2

o) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺
ηp(o∣α,x, σ2

o) → σ2
o

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(σ2

o ∣ao) → σ2
o
(σ2

o) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

o ∣ao) → σ2
o

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(σ2

o ∣ao) → ao
(ao) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

o ∣ao) → ao

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(ao) → ao

(ao) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺
ηp(ao) → ao

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(β) → β (β) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

β

vec (ββ⊺)
⎤⎥⎥⎥⎥⎦
⊺
ηp(β) → β

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(y ∣β,x, σ2

ε) → xunobs
(xunobs) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
ηp(y∣β,x, σ2

ε) → xunobs,i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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m p(y ∣β,x, σ2
ε) → β (β) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

β

vec (ββ⊺)
⎤⎥⎥⎥⎥⎦
⊺
ηp(y∣β,x, σ2

ε) → β

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(y∣β,x, σ2

ε) → σ2
ε
(σ2

ε) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

ε)
1/σ2

ε

⎤⎥⎥⎥⎥⎦
⊺
ηp(y∣β,x, σ2

ε) → σ2
ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(σ2

ε ∣aε) → σ2
ε
(σ2

ε) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

ε)
1/σ2

ε

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

ε ∣aε) → σ2
ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(σ2

ε ∣aε) → aε
(aε) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (aε)
1/aε

⎤⎥⎥⎥⎥⎦
⊺
ηp(σ2

ε ∣aε) → aε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m p(aε) → aε

(aε) ← exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (aε)
1/aε

⎤⎥⎥⎥⎥⎦
⊺
ηp(aε) → aε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The initial values for the corresponding natural parameter vectors are set as:

ηp(ax
k) → ax

k
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp{(σx
k)

2∣ax
k} → ax

k
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp(σ2
o ∣ao) → σ2

o
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦
ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2 ← ⎡⎢⎢⎢⎢⎣
−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp{x∣a,μx, (σx)2} → (σx
k)

2 ← ⎡⎢⎢⎢⎢⎣
−2
−1

⎤⎥⎥⎥⎥⎦ ;
ηp{x∣a,μx, (σx)2} → aik

← log ( 1
K
) ; ηp(aik ∣ωk) → aik

← log ( 1
K
) ;

ηp{x∣a,μx, (σx)2} → μx
k
← ⎡⎢⎢⎢⎢⎣

0

−1
2

⎤⎥⎥⎥⎥⎦ ; ηp(μx
k) → μx

k
← ⎡⎢⎢⎢⎢⎣

0

−1
2

⎤⎥⎥⎥⎥⎦ ; ηp(ak ∣ωk) → ωk
← 1;

ηp(ωk) → ωk
← αk − 1; ηp{x ∣a,μx, (σx)2} → xunobs,i

← ⎡⎢⎢⎢⎢⎣
0

−1
2

⎤⎥⎥⎥⎥⎦ ;

ηp(o∣α,x, σ2
o) → xunobs,i

← ⎡⎢⎢⎢⎢⎣
0

−1
2

⎤⎥⎥⎥⎥⎦ ; ηp(o∣α,x, σ2
o) → α ← ⎡⎢⎢⎢⎢⎣

02−1
2vec (I2)

⎤⎥⎥⎥⎥⎦ ;

ηp(α) → α ← ⎡⎢⎢⎢⎢⎣
02−1

2vec (I2)
⎤⎥⎥⎥⎥⎦ ; ηp(o∣α,x, σ2

o) → σ2
o
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ;

ηp(σ2
o ∣ao) → ao

← ⎡⎢⎢⎢⎢⎣
−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp(ao) → ao
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp(β) → β ← ⎡⎢⎢⎢⎢⎣
03−1

2vec (I3)
⎤⎥⎥⎥⎥⎦
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ηp(y∣β,x, σ2
ε) → xunobs,i

← ⎡⎢⎢⎢⎢⎣
0

−1
2

⎤⎥⎥⎥⎥⎦ ; ηp(y∣β,x, σ2
ε) → σ2

ε
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦
ηp(σ2

ε ∣aε) → σ2
ε
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp(y∣β,x, σ2
ε) → β ← ⎡⎢⎢⎢⎢⎣

03−1
2vec (I3)

⎤⎥⎥⎥⎥⎦
ηp(σ2

ε ∣aε) → aε
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦ ; ηp(aε) → aε
← ⎡⎢⎢⎢⎢⎣

−2
−1

⎤⎥⎥⎥⎥⎦
7.B.2 Step 2 (a): Update stochastic node to factor messages

The stochastic node to factor messages have the following updates:

m ax → p(ax) (ax) ←m
p{(σx)2 ∣ax} → ax (ax)

m (σx)2 → p{(σx)2 ∣ax} ←m
p{x ∣a,μx, (σx)2} → (σx)2

m (σx)2 → p{x ∣a,μx, (σx)2} ←m
p{(σx)2 ∣ax} → (σx)2

m
a→ p{x ∣a,μx, (σ2)x} ←mp(a) → a; ma→ p(a) ←m

p{x ∣a,μx, (σx)2} → a

m ω → p(a ∣ω) ←m p(ω) → ω; m ω → p(ω) ←m p(a ∣ω) → ω

m
μx → p{x ∣a,μx, (σx)2} ←m p(μx) → μx

m μx → p(μx) ←m
p{x ∣a,μx, (σx)2} → μx

m α→ p(o ∣α,x, σ2
o)
←m p(α) → α; m α→ p(α) ←m p(o ∣α,x, σ2

o) → α

m σ2
o → p(o ∣α,x, σ2

o)
←m p(σ2

o ∣ao) → σ2
o
; m σ2

o → p(σ2
o ∣ao) ←m p(o ∣α,x, σ2

o) → σ2
o

m ao → p(σ2
o ∣ao) ←m p(ao) → ao

; m ao → p(ao) ←m p(σ2
o ∣ao) → ao

m
xunobs → p{x ∣a,μx, (σx)2} ←m p(y ∣β,x, σ2

ε) → xunobs
+m p(o ∣α,x, σ2

o) → xunobs

m xunobs → p(y ∣β,x, σ2
ε)
←m

p{x ∣a,μx, (σx)2} → xunobs
+m p(o ∣α,x, σ2

o) → xunobs

m xunobs → p(o ∣α,x, σ2
o)
←m

p{x ∣a,μx, (σx)2} → xunobs
+m p(y ∣β,x, σ2

ε) → xunobs

m β → p(y ∣β,x, σ2
ε)
←m p(β) → β; m β → p(β) ←m p(y ∣β,x, σ2

ε) → β

m σ2
ε → p(y∣β,x, σ2

ε)
←m p(σ2

ε ∣aε) → σ2
ε
; m σ2

ε → p(σ2
ε ∣aε) ←m p(y∣β,x, σ2

ε) → σ2
ε

m aε → p(σ2
ε ∣aε) ←m p(aε) → aε

; m aε → p(aε) ←m p(σ2
ε ∣aε) → aε

and this is equivalent to the following natural parameter updates:

ηax
k → p(ax

k) ← ηp{(σx
k)

2∣ax
k} → ax

k
; ηax

k → p{(σx
k)

2∣ax
k}

← ηp(ax
k) → ax

k

η(σx
k)

2 → p{(σx
k)

2∣ax
k}

← ηp{x∣a,μx, (σx)2} → (σx
k)

2

η(σx
k)

2 → p{x∣a,μx, (σx
k)

2} ← ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2

ηaik → p{x∣a,μx, (σx
k)

2} ← ηp(aik ∣ωk) → aik
; ηaik → p(aik ∣ωk) ← ηp{x∣a,μx, (σx)2} → aik

ηωk → p(aik ∣ωk) ← ηp(ωk) → ωk
; ηωk → p(ωk) ← ηp(ak ∣ωk) → ωk
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ημx
k → p{x∣a,μx, (σx

k)
2} ← ηp(μx

k) → μx
k
; ημx

k → p(μx
k) ← ηp{x∣a,μx, (σx)2} → μx

k

ηα→ p(o∣α,x, σ2
o)
← ηp(α) → α; ηα→ p(α) ← ηp(o∣α,x, σ2

o) → α

ησ2
o → p(o∣α,x, σ2

o)
← ηp(σ2

o ∣ao) → σ2
o
; ησ2

o → p(σ2
o ∣ao) ← ηp(o∣α,x, σ2

o) → σ2
o

ηao → p(σ2
o ∣ao) ← ηp(ao) → ao

; ηao → p(ao) ← ηp(σ2
o ∣ao) → ao

ηxunobs,i → p{x∣a,μx, (σx)2} ← ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

ηxunobs,i → p(y∣β,x, σ2
ε)
← ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

ηxunobs,i → p(o∣α,x, σ2
o)
← ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

ηβ → p(y∣β,x, σ2
ε)
← ηp(β) → β; ηβ → p(β) ← ηp(y∣β,x, σ2

ε) → β

ησ2
ε → p(y∣β,x, σ2

ε)
← ηp(σ2

ε ∣aε) → σ2
ε
; ησ2

ε → p(σ2
ε ∣aε) ← ηp(y∣β,x, σ2

ε) → σ2
ε

ηaε → p(σ2
ε ∣aε) ← ηp(aε) → aε

; ηaε → p(aε) ← ηp(σ2
ε ∣aε) → aε

7.B.3 Step 2 (b): Update factor to stochastic node messages

We begin with the update for the factor to stochastic node message m p(ax) → ax (ax).
Since the only neighbour of factor p (ax) is the stochastic node ax this message takes on

the form

m p(ax) → ax (ax) ← exp{ 1
Z log p (ax)}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log (axk)
1/axk

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
−1/(Ax

k)2
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

This means that the update for the natural parameter vector is

ηp(ax
k) → ax

k
← ⎡⎢⎢⎢⎢⎣

−3/2
−1/(Ax

k)2
⎤⎥⎥⎥⎥⎦

and remains constant at this value since Ax
k is a hyperparameter to be specified by the

user. Next we consider the message going from factor p{(σx)2 ∣ax} to stochastic node ax:

m
p{(σx)2 ∣ax} → ax (ax) ← exp [∫

RK≥0

1

Z
m (σx)2 → p{(σx)2 ∣ax} {(σx)2}

×m
p{(σx)2 ∣ax} → (σx)2 {(σx)2}

× log p{(σx)2 ∣ax}d (σ2)2]
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∝ exp

⎡⎢⎢⎢⎢⎢⎣∫RK≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → (σx

k)
2 +ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {axk}
1/axk

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2− 1

(σx
k
)2
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
d (σx)2

⎤⎥⎥⎥⎥⎥⎦

∝ exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {axk}
1/axk

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎣

−1
2

−∫ ∞
0

1

(σx
k)2 pIGnat

((σx
k)2 ; η⊞)d (σx

k)2
⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where η⊞ ≡ ηp{x∣a,μx, (σx)2} → (σx

k)
2 +ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2 ≡ [η⊞1 η⊞2 ]⊺. Using Primitive

7.4.6, we get

m
p{(σx)2 ∣ax} → ax (ax) ← exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {axk}
1/axk

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−η⊞1 + 1

η⊞2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and thus, the natural parameter update is

ηp{(σx
k)

2∣ax
k} → ax

k
←
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

−η⊞1 + 1

η⊞2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The next message is expressed as

m
p{(σx)2 ∣ax} → (σx)2 {(σx)2} ← exp [∫

RK≥0

1

Z
m

ax → p{(σx)2 ∣ax} (ax)
×m

p{(σx)2 ∣ax} → ax (ax)
× log p{(σx)2 ∣ax}dax]

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫RK≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {axk}
1/axk

⎤⎥⎥⎥⎥⎦
⊺
(ηp(ax

k) → ax
k
+ηp{(σx

k)
2∣ax

k} → ax
k
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
− 1
ax
k

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
dax

⎤⎥⎥⎥⎥⎥⎦

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−∫ ∞

0

1

axk
pIGnat

(axk ; ηp(ax
k) → ax

k

+ηp{(σx
k)

2∣ax
k} → ax

k
)daxk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.
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Using Primitive 7.4.6, this gives

m
p{(σx)2 ∣ax} → (σx)2 {(σx)2}

← exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(ax

k) → ax
k
+ηp{(σx

k)
2∣ax

k} → ax
k
)
1
+ 1

(ηp(ax
k) → ax

k
+ηp{(σx

k)
2∣ax

k} → ax
k
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
and so, the natural parameter update is

ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2 ←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(ax

k) → ax
k
+ηp{(σx

k)
2∣ax

k} → ax
k
)
1
+ 1

(ηp(ax
k) → ax

k
+ηp{(σx

k)
2∣ax

k} → ax
k
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next,

m p(μx) → μx (μx) ← exp{ 1
Z log p (μx)}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

μμ σ2
μ−1/2σ2
μ

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

So, the constant value for the natural parameter vector is

ηp(μx
k) → μx

k
← ⎡⎢⎢⎢⎢⎣

μμ σ2
μ−1/2σ2
μ

⎤⎥⎥⎥⎥⎦ .
Moving along, we next consider the message going from factor p{x ∣a,μx, (σx)2} to the

stochastic node xunobs:

m
p{x ∣a,μx, (σx)2} → xunobs

(xunobs)
← exp

⎡⎢⎢⎢⎢⎣
n∑
i=1

K∑
k=1

1∑
aik=0

1

Z
∫
RK

∫
RK
m

a→ p{x ∣a,μx, (σ2)x} (a)
×m

p{x ∣a,μx, (σx)2} → a
(a) ×m

μx → p{x ∣a,μx, (σx)2} (μx)
×m

p{x ∣a,μx, (σx)2} → μx (μx) ×m (σx)2 → p{x ∣a,μx, (σx)2} {(σx)2}
×m

p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2} × log p{a ∣a,μx, (σx)2}
dadμx d (σx)2]
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∝ exp

⎡⎢⎢⎢⎢⎣
n∑
i=1

K∑
k=1

1∑
aik=0∫RK

∫
RK

{aik (ηp(aik ∣ωk) → aik
+ ηp{x∣a,μx, (σx)2} → aik

)}

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → μx

k
+ηp(μx

k) → μx
k
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → (σx

k)
2 +ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

aikμ
x
k/(σx

k)2−aik/2 (σx
k)2

⎤⎥⎥⎥⎥⎦dadμx d (σx)2⎤⎥⎥⎥⎥⎦

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∑
aik=0

aik × aik × (ηp(aik ∣ωk) → aik
+ ηp{x∣a,μx, (σx)2} → aik

)
×∫

R

μx
k pNnat

(μx
k ; ηp{x∣a,μx, (σx)2} → μx

k

+ηp(μx
k) → μx

k
)dμx

k × ∫
R≥0

1

(σx
k)2 pIGnat

((σx
k)2 ;

ηp{x∣a,μx, (σx)2} → (σx
k)

2 +ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
d (σx

k)2

−1
2

1∑
aik=0

aik × aik × (ηp(aik ∣ωk) → aik

+ηp{x∣a,μx, (σx)2} → aik
) × ∫

R≥0

1

(σx
k)2 pIGnat

((σx
k)2 ;

ηp{x∣a,μx, (σx)2} → (σx
k)

2 +ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
d (σx

k)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

This gives
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m
p{x ∣a,μx, (σx)2} → xunobs

(xunobs) ←

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×(ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
)
1

(η
p{x∣a,μx, (σx)2} → μx

k
+ηp(μx

k) → μx
k
)
2

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and so the update for the corresponding natural parameter is

ηp{x ∣a,μx, (σx)2} → xunobs,i
←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×(ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
)
1

(η
p{x∣a,μx, (σx)2} → μx

k
+ηp(μx

k) → μx
k
)
2

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The next message has the form:

m p(o ∣α,x, σ2
o) → xunobs

(xunobs)
← exp{∫

R3
∫
R≥0

1

Z
m α→ p(o ∣α,x, σ2

o)
(α) ×m p(o ∣α,x, σ2

o) → α (α)
×m σ2

o → p(o ∣α,x, σ2
o)
(σ2

o) ×m p(o ∣α,x, σ2
o) → σ2

o
(σ2

o)
× log p(o ∣α,x, σ2

o)dαdσ2
o}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫R3
∫
R≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺
(ηp(o∣α,x, σ2

o) → α +ηp(α) → α)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺
(ηp(o∣α,x, σ2

o) → σ2
o
+ηp(σ2

o ∣ao) → σ2
o
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

α1

σ2
o
(oxunobs,i + α0)

− α2
1

2σ2
o

⎤⎥⎥⎥⎥⎥⎦
dαdσ2

o

⎤⎥⎥⎥⎥⎥⎦

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
R≥0

1

σ2
o

pIGnat
(σ2

o ; ηp(o∣α,x, σ2
o) → σ2

o
+ηp(σ2

o ∣ao) → σ2
o
) dσ2

o

×{oxunobs,i∫
R

α1pNnat
(α1 ; ηp(o∣α,x, σ2

o) → α1

+ηp(α1) → α1
) dα1 + ∫

R
∫
R

α0α1pNnat
(α0, α1 ;

ηp(o∣α,x, σ2
o) → α0

ηp(α0) → α0
,ηp(o∣α,x, σ2

o) → α1

+ηp(α1) → α1
) dα0 dα1}

−1
2∫

R≥0

1

σ2
o

pIGnat
(σ2

o ; ηp(o∣α,x, σ2
o) → σ2

o
+ηp(σ2

o ∣ao) → σ2
o
) dσ2

o

×∫
R

α2
1pNnat

(α1 ; ηp(o∣α,x, σ2
o) → α1

+ηp(α1) → α1
) dα1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Using Primitives 7.4.6, 7.4, and 7.4.1, this gives
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m p(o ∣α,x, σ2
o) → xunobs

(xunobs)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2oxunobs,i

(η
p(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)
1

(η
p(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)
2+J (ηp(o∣α,x, σ2

o) → α +ηp(α) → α ; 1,2)}

−(ηp(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
2(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2×K(ηp(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Therefore, the corresponding natural parameter update is

ηp(o∣α,x, σ2
o) → xunobs,i

←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2oxunobs,i

(η
p(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)
1

(η
p(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)
2+J (ηp(o∣α,x, σ2

o) → α +ηp(α) → α ; 1,2)}

−(ηp(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
2(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2×K(ηp(o∣α,x, σ2

o) → α1
+ηp(α1) → α1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moving on, we next look at

m p(a ∣ω) → a (a) ← exp

⎧⎪⎪⎨⎪⎪⎩
K∑
k=1

1∑
ωk=0

1

Z
m ω → p(a ∣ω) (ω) ×m p(a ∣ω) → ω (ω)

× log p(a ∣ω)dω}
∝ exp

⎧⎪⎪⎨⎪⎪⎩
K∑
k=1

1∑
ωk=0

n∑
i=1

log (ωk) (ηp(aik ∣ωk) → ωk
+ ηp(ωk) → ωk

)
×aik log (ωk) dωk} .

Using Result 7.4.2 gives

m p(a ∣ω) → a (a) ∝ exp{ K∑
k=1

n∑
i=1

aik (ψ {(ηp(ωk) → ωk
+ ηp(aik ∣ωk) → ωk

)
k
+ 1}

−ψ [ K∑
k=1

{(ηp(ωk) → ωk
+ ηp(aik ∣ωk) → ωk

)
l
+ 1}])} .

229



7.B. DERIVATION OF ALGORITHM 12

Thus, the corresponding natural parameter is

ηp(aik ∣ωk) → aik
← (ψ {(ηp(ωk) → ωk

+ ηp(aik ∣ωk) → ωk
)
k
+ 1}

−ψ [ K∑
k=1

{(ηp(ωk) → ωk
+ ηp(aik ∣ωk) → ωk

)
l
+ 1}]) .

Next, we consider the message

m p(a ∣ω) → ω (ω) ← exp

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

K∑
k=1

1∑
aik=0

1

Z
m a→ p(a ∣ω) (a) ×m p(a ∣ω) → a (a)

× log p (a ∣ω)}
∝ exp

⎧⎪⎪⎨⎪⎪⎩
n∑
i=1

K∑
k=1

1∑
aik=0

aik (ηp{x∣a,μx, (σx)2} → aik
+ ηp(aik ∣ωk) → aik

)
× log (ωk)aik} .

The use of Result 7.4.1 gives

m p(a ∣ω) → ω (ω) ∝ exp [ n∑
i=1

K∑
k=1

log (ωk){exp(ηp{x∣a,μx, (σx)2} → aik

+ηp(aik ∣ωk) → aik
)}] .

This means that the update for the natural parameter vector is

ηp(aik ∣ωk) → ωk
← exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
) .

Next we derive the update for the factor to node message m p(ω) → ω (ω):
m p(ω) → ω (ω) ← exp{ 1

Z log p (ω)}
∝ exp{ K∑

k=1
log (ωk) (αk − 1)} .

Therefore the update for the corresponding natural parameter vector is

ηp(ωk) → ωk
← αk − 1.

Similarly, we next consider another constant update, whose corresponding message takes

the form

m p(β) → β (β) ← exp{ 1
Z log p (β)}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

β

vec (ββ⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

0

−1
2vec( 1

σ2
β

I3)
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,
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and so the natural parameter vector takes on the constant value

ηp(β) → β ←
⎡⎢⎢⎢⎢⎢⎣

0

−1
2vec( 1

σ2
β

I3)
⎤⎥⎥⎥⎥⎥⎦
.

Following on, we next consider

m p(o ∣α,x, σ2
o) → α (α) ← exp{∫

R
nunobs

∫
R≥0

1

Z
m xunobs → p(o ∣α,x, σ2

o)
(xunobs)

×m p(o ∣α,x, σ2
o) → xunobs

(xunobs)
×m σ2

o → p(o ∣α,x, σ2
o)
(σ2

o)
×m p(o ∣α,x, σ2

o) → σ2
o
(σ2

o)
× log p(o ∣α,x, σ2

o)dxunobs dσ
2
o}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫R
nunobs

∫
R≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

)}
×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺
(ηp(o∣α,x, σ2

o) → σ2
o
+ηp(σ2

o ∣ao) → σ2
o
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×⎡⎢⎢⎢⎢⎣
α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

1
σ2
o
X̃⊺o

− 1
2σ2

o
vec (X̃⊺X̃)

⎤⎥⎥⎥⎥⎦ dxunobs dσ
2
o

⎤⎥⎥⎥⎥⎦

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
R≥0

1

σ2
o

pIGnat
(σ2

o ; ηp(o∣α,x, σ2
o) → σ2

o
+ηp(σ2

o ∣ao) → σ2
o
)

×Enat
q(xunobs) (X̃)⊺ o

−1
2∫

R≥0

1

σ2
o

pIGnat
(σ2

o ; ηp(o∣α,x, σ2
o) → σ2

o
+ηp(σ2

o ∣ao) → σ2
o
)

×vec{Enat
q(xunobs) (X̃⊺X̃)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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= exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×Enat
q(xunobs) (X̃)⊺ o

−(ηp(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
2(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×vec{Enat
q(xunobs) (X̃⊺X̃)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where

Enat
q(xunobs) (X̃) = ⎡⎢⎢⎢⎢⎣

1nobs
xobs

1nunobs
−1
2
{vec−1 (η�

2,vec)}−1 η�

1

⎤⎥⎥⎥⎥⎦ ,
Enat

q(xunobs) (X̃⊺X̃) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
1⊺nobs

xobs

−1
21
⊺
nunobs

{vec−1 (η�

2,vec)}−1 η�

1

1⊺nobs
xobs

−1
21
⊺
nunobs

{vec−1 (η�

2,vec)}−1 η�

1

∥xobs∥2+
∥ − 1

2
{vec−1 (η�

2,vec)}−1 η�

1 ∥2−1
2
{vec−1 (η�

2,vec)}−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

η� ≡ [η�

1 η
�

2,vec]⊺ ≡ ηp{x ∣a,μx, (σx)2} → xunobs
+ηp(y∣β,x, σ2

ε) → xunobs
+ηp(o∣α,x, σ2

o) → xunobs
.

Therefore the corresponding natural parameter update is

ηp(o∣α,x, σ2
o) → α ←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×Enat
q(xunobs) (X̃)⊺ o

−(ηp(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
2(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

×vec{Enat
q(xunobs) (X̃⊺X̃)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next we have

m p(α) → α (α) ← exp{ 1
Z log p(α)}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

0

−1
2vec ( 1

σ2
α
I2)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
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Therefore the natural parameter update stays constant at:

ηp(α) → α ← ⎡⎢⎢⎢⎢⎣
0

−1
2vec ( 1

σ2
α
I2)

⎤⎥⎥⎥⎥⎦ .
The next message we look at is from p(o ∣α,x, σ2

o) to σ2
o :

m p(o ∣α,x, σ2
o) → σ2

o
(σ2

o)
← exp{∫

R2
∫
R
nunobs

1

Z
m α→ p(o ∣α,x, σ2

o)
(α) ×m p(o ∣α,x, σ2

o) → α (α)
×m xunobs → p(o ∣α,x, σ2

o)
(xunobs) ×m p(o ∣α,x, σ2

o) → xunobs
(xunobs)

× log p(o ∣α,x, σ2
o)dα, dxunobs}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫R2
∫
R
nunobs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

α

vec (αα⊺)
⎤⎥⎥⎥⎥⎦
⊺
(ηp(o∣α,x, σ2

o) → α +ηp(α) → α)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

)} × ⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−n/2
−1
2∥o − X̃α∥2

⎤⎥⎥⎥⎥⎦ dαdxunobs

⎤⎥⎥⎥⎥⎦
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−n/2
−1
2E

nat
q(xunobs) (∥o − X̃α∥2)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where

Enat
q(xunobs) (∥o − X̃α∥2) =
∥oxobs + 1

2X̃xobs {vec−1 (η☀2,vec)}−1 η☀1 ∥2 − 1
2tr [X̃⊺xobsX̃xobs {vec−1 (η☀2,vec)}−1]

+∥oxunobs∥2 + o⊺xunobsE
nat
q(xunobs) (X̃xunobs){vec−1 (η☀2,vec)}−1 η☀1

+1
4tr{Enat

q(xunobs) (X̃⊺xunobsX̃xunobs){vec−1 (η☀2,vec)}−1 [η☀1 (η☀1 )⊺ {vec−1 (η☀2,vec)}−1
−2I]} ,
Enat

q(xunobs) (X̃xunobs) = [1nunobs
− 1

2
{vec−1 (η�

2,vec)}−1 η�

1 ] ,
Enat

q(xunobs) (X̃⊺xunobsX̃xunobs) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

nunobs −1
21
⊺
nunobs

{vec−1 (η�

2,vec)}−1 η�

1

−1
21
⊺
nunobs

{vec−1 (η�

2,vec)}−1 η�

1

∥ − 1
2
{vec−1 (η�

2,vec)}−1 η�

1 ∥2−1
2
{vec−1 (η�

2,vec)}−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and

η☀ ≡ [η☀1 η☀2,vec]⊺ ≡ ηp(o∣α,x, σ2
o) → α +ηp(α) → α.

Therefore, the update for the corresponding natural parameter is

ηp(o∣α,x, σ2
o) → σ2

o
(σ2

o) ←
⎡⎢⎢⎢⎢⎣

−n/2
−1
2E

nat
q(xunobs) (∥o − X̃α∥2)

⎤⎥⎥⎥⎥⎦ .
Following on, the next message is

m p(σ2
o ∣ao) → σ2

o
(σ2

o) ← exp{∫
R≥0

1

Z
m ao → p(σ2

o ∣ao) (ao) ×m p(σ2
o ∣ao) → ao

(ao)
× log p(σ2

o ∣ao)dao}
∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∫R≥0

⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺
(ηp(σ2

o ∣ao) → ao
+ηp(ao) → ao

)

×⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
−1/ao

⎤⎥⎥⎥⎥⎦ dao

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

−3/2
−∫

R≥0

1

ao
pIGnat

(ηp(σ2
o ∣ao) → ao

+ηp(ao) → ao
) dao

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

With use of Primitive 7.4.6, this gives

m p(σ2
o ∣ao) → σ2

o
(σ2

o) ∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(σ2

o ∣ao) → ao
+ηp(ao) → ao

)
1

+1
(η

p(σ2
o ∣ao) → ao

+ηp(ao) → ao
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

therefore the corresponding natural parameter update is

ηp(σ2
o ∣ao) → σ2

o
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(σ2

o ∣ao) → ao
+ηp(ao) → ao

)
1

+1
(η

p(σ2
o ∣ao) → ao

+ηp(ao) → ao
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Next, we look at

m p(σ2
o ∣ao) → ao

(ao) ← exp{∫
R≥0

1

Z
m σ2

o → p(σ2
o ∣ao) (σ2

o) ×m p(σ2
o ∣ao) → σ2

o
(σ2

o)
× log p(σ2

o ∣ao)dσ2
o}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩∫R≥0

⎡⎢⎢⎢⎢⎣
log (σ2

o)
1/σ2

o

⎤⎥⎥⎥⎥⎦
⊺
(ηp(o∣α,x, σ2

o) → σ2
o
+ηp(σ2

o ∣ao) → σ2
o
)

×⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2−1/σ2
o

⎤⎥⎥⎥⎥⎦ dσ2
o

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎣

−1
2

−∫
R≥0

1

σ2
o

pIGnat
(ηp(o∣α,x, σ2

o) → σ2
o
+ηp(σ2

o ∣ao) → σ2
o
) dσ2

o

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Once again, making use of Primitive 7.4.6, we get

m p(σ2
o ∣ao) → ao

(ao) ∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

and so, the corresponding natural parameter update is

ηp(σ2
o ∣ao) → ao

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(o∣α,x, σ2

o) → σ2
o
+η

p(σ2
o ∣ao) → σ2

o
)
1

+1
(η

p(o∣α,x, σ2
o) → σ2

o
+η

p(σ2
o ∣ao) → σ2

o
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we have

m p(ao) → ao
(ao) ← exp{ 1

Z log (ao)}
∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (ao)
1/ao

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−3/2
−1/A2

o

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

thus the corresponding natural parameter vector has the constant value

ηp(ao) → ao
← ⎡⎢⎢⎢⎢⎣

−3/2
−1/A2

o

⎤⎥⎥⎥⎥⎦ .
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Next, we have

m
p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2}
← exp

⎡⎢⎢⎢⎢⎣
n∑
i=1

K∑
k=1

1∑
aik=0∫R

nunobs
∫
RK

1

Z
m

a→ p{x ∣a,μx, (σ2)x} (a)
×m

p{x ∣a,μx, (σx)2} → a
(a)

×m
xunobs → p{x ∣a,μx, (σx)2} (xunobs) ×m p{x ∣a,μx, (σx)2} → xunobs

(xunobs)
×m

μx → p{x ∣a,μx, (σx)2} (μx) ×m
p{x ∣a,μx, (σx)2} → μx (μx)

× log p{x ∣a,μx, (σx)2}dadxunobs dμ
x]

∝ exp

⎡⎢⎢⎢⎢⎣
n∑
i=1

K∑
k=1

1∑
aik=0∫R

nunobs
∫
RK

{aik (ηp(aik ∣ωk) → aik
+ ηp{x∣a,μx, (σx)2} → aik

)}

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
(ηp(y∣β,x, σ2

ε) → xunobs,i
+ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

)} ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺
(ηp(μx

k) → μx
k

+ηp{x∣a,μx, (σx)2} → μx
k
)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

−1
2aik−1

2aik (xi − μx
k)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

dadxunobs dμ
x]

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

1∑
aik=0

aik × aik × (ηp(aik ∣ωk) → aik
+ ηp{x∣a,μx, (σx)2} → aik

)

−1
2 × aik × (ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×∫
R
∫
R

(xi − μk)2pNnat
(xi, μk ; ηp(y∣β,x, σ2

ε) → xunobs,i+ηp{x ∣a,μx, (σx)2} → xunobs,i
+ηp(o∣α,x, σ2

o) → xunobs,i
,

ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
) dxunobs,i dμ

x
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

This implies that the (ai1, . . . , aiK) follow the

Mnat {1;(ηp(ai∣ω) → ai
+ ηp{x∣a,μx, (σx)2} → ai

)
1
, . . . ,

(ηp(ai∣ω) → ai
+ ηp{x∣a,μx, (σx)2} → ai

)
K
)
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distribution and making use of Result 7.4.1 and Primitive 7.4.2, we get

m
p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2} ∝

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×I (ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp{x ∣a,μx, (σx)2} → xunobs,i+ηp(o∣α,x, σ2
o) → xunobs,i

, ηp{x∣a,μx, (σx)2} → μx
k+ηp(μx

k) → μx
k
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Therefore, the update for the corresponding natural parameter vector is

ηp{x∣a,μx, (σx)2} → (σx
k)

2 ←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

−1
2exp(ηp(aik ∣ωk) → aik

+ ηp{x∣a,μx, (σx)2} → aik
)

×I (ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp{x ∣a,μx, (σx)2} → xunobs,i+ηp(o∣α,x, σ2
o) → xunobs,i

, ηp{x∣a,μx, (σx)2} → μx
k+ηp(μx

k) → μx
k
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next we look at

m
p{x ∣a,μx, (σx)2} → a

(a)
← exp [∫

RK
∫
RK

∫
R
nunobs

1

Z
m (σx)2 → p{x ∣a,μx, (σx)2} {(σx)2}

×m
p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2} ×m

μx → p{x ∣a,μx, (σx)2} (μx)
×m

p{x ∣a,μx, (σx)2} → μx (μx) ×m
xunobs → p{x ∣a,μx, (σx)2} (xunobs)

×m
p{x ∣a,μx, (σx)2} → xunobs

(xunobs) × log p{x ∣a,μx, (σx)2}
d (σx)2 dμx dxunobs]
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∝ exp

⎡⎢⎢⎢⎢⎢⎣∫RK
∫
RK

∫
R
nunobs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → (σx

k)
2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)} ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → μx

k

+ηp(μx
k) → μx

k
)} ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

)}
× n∑

i=1
K∑
k=1

aik (log [{2π (σx
k)2}−1/2 exp{−1

2 (xi − μx
k)2 / (σx

k)2}])
d (σx)2 dμx dxunobs]

∝ exp{ n∑
i=1

K∑
k=1

aik (−1
2 [∫

R≥0
log {(σx

k)2} pIGnat
((σx

k)2 ; ηp{x∣a,μx, (σx)2} → (σx
k)

2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2) d (σx
k)2 − ∫

R≥0

1

(σx
k)2pIGnat

((σx
k)2 ; ηp{x∣a,μx, (σx)2} → (σx

k)
2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2) d (σx
k)2 × ∫

R
∫
R

(xi − μx
k)2 pNnat

(xi, μx
k ;

ηp{x ∣a,μx, (σx)2} → xunobs,i
+ηp(y∣β,x, σ2

ε) → xunobs,i
+ηp(o∣α,x, σ2

o) → xunobs,i
,

ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
)dxunobs,i dμ

x
k])} .

Making use of Primitives 7.4.2, 7.4.6 and 7.4.7, this gives

m
p{x ∣a,μx, (σx)2} → a

(a) ∝
exp{ n∑

i=1
K∑
k=1

aik (−1
2 [log{−(ηp{x∣a,μx, (σx)2} → (σx

k)
2 +ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2)
2
}

−ψ {−(ηp{x∣a,μx, (σx)2} → (σx
k)

2 +ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1
− 1}

−
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×I (ηp{x ∣a,μx, (σx)2} → xunobs,i

ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

,

ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
)])} .

Recognising that a follows a series of n Multinomial distributions, the update for the
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corresponding natural parameter vector is

ηp{x∣a,μx, (σx)2} → aik
←

−1
2 [log{−(ηp{x∣a,μx, (σx)2} → (σx

k)
2 +ηp{(σx

k)
2∣ax

k} → (σ
x
k)

2)
2
}

−ψ {−(ηp{x∣a,μx, (σx)2} → (σx
k)

2 +ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1
− 1}

−
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×I (ηp{x ∣a,μx, (σx)2} → xunobs,i

ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

, ηp{x∣a,μx, (σx)2} → μx
k
+ηp(μx

k) → μx
k
)] .

Next,

m
p{x ∣a,μx, (σx)2} → μx (μx)
← exp{∫

R≥0

n∑
i=1

K∑
k=1

1∑
a=0∫R

nunobs

1

Z
m (σx)2 → p{x ∣a,μx, (σx)2} {(σx)2}

×m
p{x ∣a,μx, (σx)2} → (σx)2 {(σx)2} ×m

a→ p{x ∣a,μx, (σ2)x} (a)
×m

p{x ∣a,μx, (σx)2} → a
(a) ×m

xunobs → p{x ∣a,μx, (σx)2} (xunobs)
×m

p{x ∣a,μx, (σx)2} → xunobs
(xunobs) × log p{x ∣a,μx, (σx)2}

d (σx)2 dadxunobs}

∝
⎡⎢⎢⎢⎢⎢⎣∫R≥0

n∑
i=1

K∑
k=1

1∑
aik=0∫R

nunobs

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1

⎡⎢⎢⎢⎢⎣
log {(σx

k)2}
1/(σx

k)2
⎤⎥⎥⎥⎥⎦
⊺
(ηp{x∣a,μx, (σx)2} → (σx

k)
2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)} × { n∑
i=1

K∑
k=1

aik (ηp{x∣a,μx, (σx)2} → aik
+ ηp(aik ∣ωk) → aik

)}
×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺
(ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

)} ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

aik (xi/ (σx
k)2)−1

2aik/ (σx
k)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

d (σx)2 dadxunobs]
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∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∑
aik=0

aik × aik × (ηp{x∣a,μx, (σx)2} → aik
+ ηp(aik ∣ωk) → aik

)
×∫

R

xipNnat
(xi ; ηp{x ∣a,μx, (σx)2} → xunobs,i

+ηp(y∣β,x, σ2
ε) → xunobs,i

+ηp(o∣α,x, σ2
o) → xunobs,i

) dxunobs,i

×∫
R≥0

1

(σx
k)2 pIGnat

((σx
k)2 ; ηp{x∣a,μx, (σx)2} → (σx

k)
2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2) d (σx
k)2

−1
2

1∑
aik=0

aik × aik × (ηp{x∣a,μx, (σx)2} → aik
+ ηp(aik ∣ωk) → aik

)
×∫

R≥0

1

(σx
k)2 pIGnat

((σx
k)2 ; ηp{x∣a,μx, (σx)2} → (σx

k)
2

+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2) d (σx
k)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Using Primitive 7.4.6 and Result 7.4.1, we get

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

K∑
k=1

⎡⎢⎢⎢⎢⎣
μx
k(μx
k)2

⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
)

×{E nat
q(xunobs) (x)}i

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

−1
2exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
)

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where

E nat
q(xunobs) (x) ≡

⎡⎢⎢⎢⎢⎣
xobs

−1
2
{vec−1 (η�

2,vec)}−1 η�

1

⎤⎥⎥⎥⎥⎦

240



7.B. DERIVATION OF ALGORITHM 12

therefore the corresponding natural parameter vector is

ηp{x∣a,μx, (σx)2} → μx
k
←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
)

×{E nat
q(xunobs) (x)}i

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

−1
2exp(ηp{x∣a,μx, (σx)2} → aik

+ ηp(aik ∣ωk) → aik
)

×(ηp{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
1

+1
(η

p{x∣a,μx, (σx)2} → (σx
k)

2+ηp{(σx
k)

2∣ax
k} → (σ

x
k)

2)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Continuing on, we next consider

m p(y ∣β,x, σ2
ε) → xunobs

(xunobs)
← exp{∫

R3
∫
R≥0

1

Z
m β → p(y ∣β,x, σ2

ε)
(β) ×m p(y ∣β,x, σ2

ε) → β (β)
×m σ2

ε → p(y∣β,x, σ2
ε)
(σ2

ε) ×m p(y∣β,x, σ2
ε) → σ2

ε
(σ2

ε)
× log p(y ∣β,x, σ2

ε)dβ dσ2
ε}

∝ exp

⎡⎢⎢⎢⎢⎢⎣∫R3
∫
R≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

β

vec (ββ⊺)
⎤⎥⎥⎥⎥⎦
⊺
(ηp(y∣β,x, σ2

ε) → β +ηp(β) → β)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
log (σ2

ε)
1/σ2

ε

⎤⎥⎥⎥⎥⎦
⊺
(ηp(y∣β,x, σ2

ε) → σ2
ε
+ηp(σ2

ε ∣aε) → σ2
ε
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺ ⎡⎢⎢⎢⎢⎣

1
σ2
ε
(βxyxunobs,i − β0βx − βcβxcxunobs,i)

− βx

2σ2
ε

⎤⎥⎥⎥⎥⎦ dβ dσ2
ε

⎤⎥⎥⎥⎥⎦
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= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
R≥0

1

σ2
ε

pIGnat
(σ2

ε ; ηp(y∣β,x, σ2
ε) → σ2

ε
+ηp(σ2

ε ∣aε) → σ2
ε
) dσ2

ε

×{yxunobs,i∫
R

βxpNnat
(βx ; ηp(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

) dβx

−∫
R2
β0βxpNnat

(β0, βx ; ηp(y∣β,x, σ2
ε) → β0

+ηp(β0) → β0
,

ηp(y∣β,x, σ2
ε) → βx

+ηp(βx) → βx
) dβ0 dβx

−cxunobs,i∫
R2
βcβxpNnat

(βc, βx ; ηp(y∣β,x, σ2
ε) → βc

+ηp(βc) → βc
,

ηp(y∣β,x, σ2
ε) → βx

+ηp(βx) → βx
) dβc dβx}

−1
2∫

R≥0

1

σ2
ε

pIGnat
(σ2

ε ; ηp(y∣β,x, σ2
ε) → σ2

ε
+ηp(σ2

ε ∣aε) → σ2
ε
) dσ2

ε

×∫
R

βxpIGnat
(βx ; ηp(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

) dβx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

With the use of Primitives 7.4.5 and 7.4.6, this gives

m p(y ∣β,x, σ2
ε) → xunobs

(xunobs)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nunobs∑
i=1

⎡⎢⎢⎢⎢⎣
xunobs,i

x2unobs,i

⎤⎥⎥⎥⎥⎦
⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2yxunobs,i

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
1

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
2−J (ηp(y∣β,x, σ2

ε) → β +ηp(β) → β ; 1, 3)
−cxunobs,iJ (ηp(y∣β,x, σ2

ε) → β +ηp(β) → β ; 2, 3)}

1
4

(η
p(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
1

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and so the corresponding natural parameter update is
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ηp(y∣β,x, σ2
ε) → xunobs,i

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1
2yxunobs,i

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
1

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
2−J (ηp(y∣β,x, σ2

ε) → β +ηp(β) → β ; 1, 3)
−cxunobs,iJ (ηp(y∣β,x, σ2

ε) → β +ηp(β) → β ; 2, 3)}
1
4

(η
p(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

×(ηp(y∣β,x, σ2
ε) → βx

+ηp(βx) → βx
)
1

(η
p(y∣β,x, σ2

ε) → βx
+ηp(βx) → βx

)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next we consider the message from factor p(y ∣β,x, σ2
ε) to stochastic node β. The deriva-

tion for this message is similar to that of m p(o ∣α,x, σ2
o) → α (α) and has the form:

ηp(y∣β,x, σ2
ε) → β ←

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η
p(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

×Enat
q(xunobs) (X)⊺ y

−(ηp(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
2(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

×vec{Enat
q(xunobs) (X⊺X)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Enat
q(xunobs) (X) = ⎡⎢⎢⎢⎢⎣

1nobs
cxobs xobs

1nunobs
cxunobs −1

2
{vec−1 (η�

2,vec)}−1 η�

1

⎤⎥⎥⎥⎥⎦
and

Enat
q(xunobs) (X⊺X) =
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n 1⊺nc

1⊺nobs
xobs

−1
2
1⊺nunobs

{vec−1 (η�

2,vec)}−1×η�

1

1⊺nc ∥c∥2
c⊺xobsxobs

−1
2
c⊺xunobs {vec−1 (η�

2,vec)}−1×η�

1

1⊺nobs
xobs

−1
2
1⊺nunobs

{vec−1 (η�

2,vec)}−1×η�

1

c⊺xobsxobs

−1
2
c⊺xunobs {vec−1 (η�

2,vec)}−1×η�

1

∥xobs∥2+
∥ − 1

2
{vec−1 (η�

2,vec)}−1η�

1 ∥2
−1

2
{vec−1 (η�

2,vec)}−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The last four messages we consider are m p(y∣β,x, σ2
ε) → σ2

ε
(σ2

ε), m p(σ2
ε ∣aε) → σ2

ε
(σ2

ε),
m p(σ2

ε ∣aε) → aε
(aε) and m p(aε) → aε

(aε). The derivation of these messages is similar to

that shown for m p(o ∣α,x, σ2
o) → σ2

o
(σ2

o), m p(σ2
o ∣ao) → σ2

o
(σ2

o), m p(σ2
o ∣ao) → ao

(ao) and

m p(ao) → ao
(ao), respectively. Consequently, we only give their corresponding natural

parameter updates:

ηp(y∣β,x, σ2
ε) → σ2

ε
(σ2

ε) ←
⎡⎢⎢⎢⎢⎣

−n/2
−1
2E

nat
q(xunobs) (∥y −Xβ∥2)

⎤⎥⎥⎥⎥⎦ ,

ηp(σ2
ε ∣aε) → σ2

ε
←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(σ2

ε ∣aε) → aε
+ηp(aε) → aε

)
1

+1
(η

p(σ2
ε ∣aε) → aε

+ηp(aε) → aε
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ηp(σ2
ε ∣aε) → aε

←
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3/2
−(ηp(y∣β,x, σ2

ε) → σ2
ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
1

+1
(η

p(y∣β,x, σ2
ε) → σ2

ε
+η

p(σ2
ε ∣aε) → σ2

ε
)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ηp(aε) → aε
← ⎡⎢⎢⎢⎢⎣

−3/2
−1/A2

ε

⎤⎥⎥⎥⎥⎦ ,
where

Enat
q(xunobs) (∥y −Xβ∥2) =
∥yxobs + 1

2Xxobs {vec−1 (η⧫2,vec)}−1 η⧫1∥
2 − 1

2tr [X⊺xobsXxobs {vec−1 (η⧫2,vec)}−1]
+∥yxunobs∥2 + y⊺xunobsE

nat
q(xunobs) (Xxunobs) {vec−1 (η⧫2,vec)}−1 η⧫1

+1
4tr{Enat

q(xunobs) (X⊺xunobsXxunobs){vec−1 (η⧫2,vec)}−1 [η⧫1 (η⧫1 )⊺ {vec−1 (η⧫2,vec)}−1
−2I]} ,
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Enat
q(xunobs) (Xxunobs) = [1nunobs

cxunobs − 1
2
{vec−1 (η�

2,vec)}−1 η�

1 ] ,
Enat

q(xunobs) (X⊺xunobsXxunobs) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nunobs 1⊺nunobs
cxunobs

−1
2
1⊺nunobs

{vec−1 (η�

2,vec)}−1×η�

1

1⊺nunobs
cxunobs ∥cxunobs∥2 −1

2
c⊺xunobs {vec−1 (η�

2,vec)}−1×η�

1

−1
2
1⊺nunobs

{vec−1 (η�

2,vec)}−1×η�

1

−1
2
c⊺xunobs {vec−1 (η�

2,vec)}−1×η�

1

∥ − 1
2
{vec−1 (η�

2,vec)}−1η�

1 ∥2
−1

2
{vec−1 (η�

2,vec)}−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and η⧫ ≡ [η⧫1 η⧫2,vec]⊺ ≡ ηp(y∣β,x, σ2
ε) → β +ηp(β) → β.

7.B.4 Step 3 : Optimal q-densities

Once convergence is achieved from Steps 2(a) and (b) we get the optimal q-densities of

each stochastic node through the following updates:

η∗
q(α) ← η∗

p(o∣α,x, σ2
o) → α

+η∗
p(α) → α

η∗
q(σ2

o)
← η∗

p(o∣α,x, σ2
o) → σ2

o
+η∗

p(σ2
o ∣ao) → σ2

o

η∗
q(ao) ← η∗

p(σ2
o ∣ao) → ao

+η∗
p(ao) → ao

.

For 1 ≤ k ≤K:

η∗
q(ax

k)
← η∗

p(ax
k) → ax

k
+η∗

p{(σx
k)

2∣ax
k} → ax

k

η∗
q {(σx

k)
2}

← η∗
p{(σx

k)
2∣ax

k} → (σ
x
k)

2 +η∗p{x∣a,μx, (σx)2} → (σx
k)

2

η∗
q(μx

k)
← η∗

p{x∣a,μx, (σx)2} → μx
k

+η∗
p(μx

k) → μx
k
.

For 1 ≤ i ≤ n and 1 ≤ k ≤K:

η∗
q(aik)

← η∗
p{x∣a,μx, (σx)2} → aik

+ η∗
p(aik ∣ωk) → aik

η∗
q(ωk)

← η∗
p(aik ∣ωk) → ωk

+ η∗
p(ωk) → ωk

η∗
q(β) ← η∗

p(y∣β,x, σ2
ε) → β

+η∗
p(β) → β

η∗
q(σ2

ε)
← η∗

p(y∣β,x, σ2
ε) → σ2

ε
+η∗

p(σ2
ε ∣aε) → σ2

ε

η∗
q(aε) ← η∗

p(σ2
ε ∣aε) → aε

+η∗
p(aε) → aε

.

For 1 ≤ i ≤ nunobs:

η∗
q(xunobs,i)

← η∗
p{x∣a,μx, (σx)2} → xunobs,i

+η∗
p(y∣β,x, σ2

ε) → xunobs,i

+η∗
p(o∣α,x, σ2

o) → xunobs,i
.
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Chapter 8

Conclusion

This thesis has aimed to increase the body of algorithms and results on MFVB inference

in heteroscedastic and longitudinal regression. It has helped emphasise the importance

of MFVB in both semiparametric and nonparametric regression settings and has demon-

strated that MFVB provides a fast deterministic alternative to the stochastic MCMC with

often little degradation in accuracy. Overall, we have developed extensions of previously

used MFVB methodology for some model settings, whereas in others, we have developed

original MFVB algorithms which had not previously been considered. Even though the

simulations and real datasets used in this thesis have not exceeded over 10 megabytes in

size, the idea behind the construction of these fast algorithms is to apply such methodol-

ogy to larger and even more complex datasets that require further storage than what is

available on a standard computer.

In Chapter 2, we extended the work of Al Kadiri et al. (2010) to obtain an MFVB

algorithm catered to the marginal longitudinal semiparametric regression setting. This

resulted in faster inference for the nutritional epidemiology study and it was clear that

MFVB estimation of the model parameters in a simulation study was very high.

Chapter 3 considered the setting involving heteroscedastic semiparametric regression.

This led to a modification of ordinary MFVB, called non-conjugate variational message

passing which aids the incorporation of a heteroscedastic component without the need to

stray from closed form algebraic expressions. Overall, the accuracy of the mean functions

is very high and the accuracy of the variance functions, whilst not as accurate as the mean,

are still producing considerably favorable accuracy scores.

In Chapter 4, we looked into the development of MFVB algorithms for three extensions
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of the heteroscedastic setting considered in Chapter 3. We explore a real-time, bivariate

predictor and additive model analogue of Chapter 3. Through the use of real-data exam-

ples, simulation studies and a real-time movie, we saw the time benefits of using such an

algorithm.

Chapter 5 looks into the development of an MFVB algorithm for subject-specific curve

models making use of longitudinal and multilevel structures. This chapter takes advantage

of the structure of the model and looks into streamlining a näıve implementation of an

MFVB algorithm, resulting in even faster inference.

In Chapter 6, we derived a fast MFVB algorithm to fitting a linear regression model

with classical measurement error. The time savings here were evident, however extension

of such methodology to arbitrarily large models involving measurement error would show

time savings of higher magnitudes.

Chapter 7 discussed VMP, an alternative to MFVB, which produces the same approxi-

mation but with a different algebraic system. There, we derived the VMP updates for two

models used throughout the thesis and provided the details of the methodology behind

VMP by presenting a general VMP scheme.

It is generally not known ahead of time whether the MFVB approximation will produce

an acceptable level of accuracy. The accuracy of MFVB varies depending on the type of

application. As exhibited in this thesis, MFVB estimation of mean curves is very good but

MFVB credible sets are generally underestimated. However, even with the shortcomings

of poor estimation of credible sets, the speed and computational gains afforded by MFVB

make it a good choice for complex models combined with large datasets.

Each chapter has shed light on the overall effectiveness of MFVB inference as a fast

alternative to MCMC when time and/or storage is of concern. We have seen that the

accuracy of MFVB varies depending on many details involved in the type of application.

As indicated by the variety of models used, MFVB is of no doubt a dynamic area of

statistical research where the potential to further contributions is profound.
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