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Abstract

The focus of this thesis is on the development and assessment of mean field variational
Bayes (MFVB), which is a fast, deterministic tool for inference in a Bayesian hierarchical
model setting. We assess the performance of MFVB via the use of comprehensive com-
parisons against a Markov chain Monte Carlo (MCMC) benchmark. Each of the models
considered are special cases of semiparametric regression. In particular, we focus on the
development and assessment of the performance of MFVB for heteroscedastic and longitu-
dinal semiparametric regression models. Generally, the new MFVB methodology performs
well in its assessment of accuracy against MCMC for the semiparametric and nonparamet-
ric regression models considered in this thesis. It is also much faster and is shown to be
applicable to real-time analyses. Several real data illustrations are provided. Altogether,
MFVB proves to be a credible inference tool and a good alternative to MCMC, especially

when analysis is hindered by time constraints.
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Chapter 1

Introduction

“Information is the oil of the 21st century & analytics is the

combustion engine”

- Peter Sondergaard, Senior Vice President, Gartner Research.

The rapid growth of information is one of the most challenging issues the world faces today.
To appreciate the degree by which an information revolution is under way, consider for
instance the Sloan Digital Sky Survey telescope in New Mexico, which in 2000, collected
more data in its first few weeks of operation than had been amassed in the entire history
of astronomy. An even more salient example is Facebook, having just celebrated its 10th
birthday, has more than 10 million photos uploaded every hour and a like button clicked
almost 3 billion times per day. This recent growth of information has become known as
the big data revolution and acts as the underlying motivation for this thesis. In some
instances, the amount of information has grown so much, that the volume being handled
no longer fits into standard computer memory. As a result, engineers need to re-develop
tools for analysing it all. This is the drive behind new data processing technologies such
as Map Reduce and Hadoop, which allows one to manage larger troves of data than ever
before.

In a similar vein, the pace of processing information in recent years has given impetus
for the development of faster data analysis techniques to replace conventional methods
that, however accurate, take much longer to run. Specifically, this thesis focuses on the
development and assessment of mean field variational Bayes (MFVB), which is a fast
alternative to Markov chain Monte Carlo (MCMC). These methods are considered in a

hierarchical Bayesian model setting, with comprehensive comparisons between the two
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being a theme of this work. We commence our discussion by considering a review of the

literature surrounding MFVB.

1.1 Literature review

The Bayesian statistical literature is dominated by simulation-based approximations such
as MCMC. Since its emergence in Bayesian statistics in the 1990s, and its ensuing construc-
tion of the Bayesian inference engines BUGS (Bayesian inference Using Gibbs Sampling)
(Spiegelhalter et al., 2003) and Stan (Stan Development Team, 2014), MCMC has made
previously intractable inference problems solvable. When challenged with a new and pos-
sibly complex model that requires fitting and inference, the Bayesian analyst can choose
between at least two approaches: (a) to manually program MCMC using Metropolis-
Hastings and/or slice sampling as a way of dealing with arduous full conditional distribu-
tions; or (b) to implement the model in the BUGS inference engine by the simple press of
a button.

Albeit an extremely accurate inference tool, MCMC’s main setback from an applied
standpoint is the waiting time required for a program to run, sometimes taking days or
even weeks to get results. When considering applications that depend on speedy analysis,
such as speech recognition and robot vision, these times are unacceptably slow. A rapid
deterministic alternative to MCMC and Monte Carlo methods in general is the variational
approximation, which involves approximate inference for parameters in complex statistical
models. Let us next discuss variational approximations and their emergence into the

computer science and statistical literature.

1.1.1 Variational approximations

Variational approximations originate from the mathematical topic of variational calculus,
which has been part of the mathematical literature for over two centuries. Variational
calculus involves optimising a functional over a specified class of functions, somewhat
akin to the way in which a function can depend on a numerical variable. Variational
approximations arise when constraints are fixed on the specified class of functions, usually
to enforce tractability (e.g. Ormerod & Wand, 2010).

The posterior distribution of the model parameters is of primary interest in Bayesian

inference. However, even for relatively simple models, the derivation of the posterior
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density can sometimes involve intractable integrals. As mentioned previously, our interest
lies in the achievement of faster inference for hierarchical Bayesian models. Specifically,
we are interested in providing a deterministic alternative to the stochastic MCMC by
combining the notions of Bayesian inference together with the variational approximation,
in order to approximate these previously intractable integrals. MFVB arises when the
variational approximation being used is subject to a specific factorisation, and is therefore,
limited in its approximation accuracy.

Variational approximations have made eye-catching appearances in the computer sci-
ence literature, where they have acted as the underlying methodology behind sophisticated
areas of research such as Markov random fields, error-control coding and language pro-
cessing (Jordan et al., 1999; Jordan, 2004). Comprehensive summaries of the variational
approximation may be found in Bishop (2006, Chapter 10) and Ormerod & Wand (2010).
What is lacking in the computer science literature, however, is research on the accuracy
of the variational approximation. This provides the statistical sciences an opportunity
to consolidate the existence of an accuracy assessment where we provide a quantitative
assessment of the performance of the variational approximation. Research into the quality
of the variational approximation has already manifested in statistical literature for spe-
cific models. For example, Wang & Titterington (2003) study the consistency properties
of variational Bayesian estimators for mixture models involving known densities. It was
shown that with probability 1, as the iterations approach infinity, the algorithm converges
locally to the maximum likelihood estimator. In addition, Wang et al. (2006) introduce
a general algorithm for computing variational Bayesian estimates and look into its con-
vergence properties for a normal mixture model. For a comprehensive listing of other
relevant literature on the accuracy of the variational approximation, Jordan (2004) and
Titterington (2004) discuss further sources.

The specific focus of this thesis therefore, is to provide an in-depth investigation into
a specific type of variational approximation, which we refer to as ME'VB. The review of

the literature surrounding MFVB follows.

1.1.2 Mean field variational Bayes

Mean field variational Bayes (Wainwright & Jordan, 2008) involves Bayesian estimation

in graphical models, specifically catered to the variational posterior distribution restricted
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to a factorised form. It is one of the most common types of variational approximation
used today (Parisi, 1988). The use of MFVB has become more prevalent in the statistical
literature in the past decade. For example, Teschendorff et al. (2005) use MFVB as a
means of accurately categorising tumour types through gene-expression profiling. McGrory
& Titterington (2007) applied MEVB to the Bayesian analysis of mixtures of Gaussian
distributions. Further, in 2008, a MFVB-based software package named Infer. NET (Minka
et al., 2008) was developed. This allowed one to use MFVB on a wide range of statistical
problems, making MFVB more accessible than ever before.

In more recent years, MFVB has appeared in the Journal of the American Statistical
Association (Braun & McAuliffe, 2010; Faes et al., 2011), exposing MFVB to a wider
audience and demonstrating its potential application. A new major area of application
based on MFVB is real-time semiparametric regression analysis (Luts et al., 2013). Other
recent MFVB examples are given in, but not limited to, Hall et al. (2011), Huang et al.
(2013), Wand (2014), McGrory & Titterington (2007), Wang et al. (2006) and Neville
et al. (2014).

1.2 Contribution

Even though we have seen MFVB appear in many different statistical settings, there is
still a wide range of research needed to be carried out. This thesis aims to contribute
to the missing parts of research and application dedicated to MFVB. In particular, our
contribution lies in our ability to expose MFVB, yet again, as a faster, more prominent
alternative to more widely used inference methods such as the Laplace approximation and
MCMC. In addition, we aim to contribute by quantitatively assessing the accuracy of

MFVB in various statistical settings.

1.3 Notational guide

There are two main notations used throughout this thesis, namely vector and matrix

notation, and probability notation. These are discussed in the following two sections.
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1.3.1 Vector and matrix notation

Lower case bold fonts are used to denote vectors and upper case bold fonts denote matrices.
The real line is denoted by R and m-dimensional space as R™. The m x 1 column vector
with all entries equal to 1 is denoted by 1,,. The m x m identity matrix is denoted by
I,,. For vectors a,b € R™, denoted by a = [ay,...,a,]" and b = [by,...,b,]" we define
the following notation.
The element-wise multiplication of two vectors a and b is denoted by
a1b1
a®b=
Ambm
The norm of a vector a is defined to be || a ||= vVaTa. We use a_; to denote the vector a
with the ith element removed. A scalar valued function of a vector is evaluated element-
wise. For example,
log(a1)
log(a) =
log(am)
We let diag(a) denote the m x m diagonal matrix formed by assigning the elements of a

to the main diagonal. For instance,

al 0 N 0
.. 0

diag(a) = @2
0O 0 ... anm

For any m xm matrix A, diagonal(A) refers to the m x 1 vector consisting of the diagonal
entries of A. For square matrices (Ay,..., Ay), we define blockdiag(Aj, ..., Ay) to be the
block diagonal matrix, with the ith block equal to A;. For a symmetric m x m matrix A,
the determinant and trace are denoted by |A| and tr(A) respectively, and are defined in
the usual way.
For the matrices A(m xn) and B(p x q), defined as
ailr ... Qin bin i by
A= : : and B = : : ,

aml .- Amn bpl bpq

the following notation is provided.
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The transpose of A is denoted by AT. We let A™! denote the matrix inverse, given that
A is an invertible matrix. The Kronecker product of two matrices A and B is denoted by

anB e alnB

A®B = :

amB ... am,B
We define vec(A) to be the m?x1 vector obtained by stacking the columns of A underneath
each other from left to right. If @ is a m? x 1 vector then vec™! (a) is defined to be the
m x m matrix obtained by listing the entries of a in a column-wise fashion from left to
right. Also, vec™' denotes the usual function inverse since the domain of vec is restricted

to square matrices.

1.3.2 Probability notation

If x and y represent scalar random variables, the mean and variance of x are represented
as E(x) and Var(z). The covariance between x and y is represented as Cov(z,y).

If 0 is a random vector, its density function is denoted by p(8). If ¢ is also a random
vector, the conditional density function of 8 given ¢ is denoted by p(8|¢). In a Bayesian
model setting, the full conditional distribution of 6 is given by p(8|rest) and represents
the conditional distribution of 8 given the rest of the random variables in the model. The
mean and covariance of a random vector 6 is given by E(8) and Cov(8).

When using MFVB, the approximate densities are denoted using the letter g. We call
these densities g-densities. The mean and variance of a scalar random variable # under

the MFVB criterion is given by:
Eq(0) = pgey and Varg(0) = 0'2(9).

Similarly, the mean and covariance of a random vector € under the MFVB criterion is

given by:
Ey(0) = pyy and Covy(8) = 3y g)-

Finally, if z1,...,x, is a sequence of independent random variables following distribution

D, we denote that as x; "~ D, for 1 <i <n.
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1.4 Theorems, definitions and results

1.4.1 Vector differential calculus

Suppose f(x) is a function with argument x € RP that returns a scalar. The derivative
vector of f(x) is the 1xp vector Dy f with ith entry equal to 9 f(x)/0x; where x; is the ith
entry of x. Dy f is found using the First Identification Theorem (Magnus & Neudecker,
1999):

Theorem 1.4.1. If a is a 1 x p vector where d f(x) = adx, then the derivative vector

18

a=D.f.

Differentiation again with respect to @ gives the p x p Hessian matriz Hgf with (i,7)th
entry equal to 9% f(x)/0r;0x; where x; and z; are the ith and jth entry of . Hgf is
found using the Second Identification Theorem (Magnus & Neudecker, 1999):

Theorem 1.4.2. If A is a p x p matriz where d>f(x) = (dz)T Adx, then the Hessian

malrix s
A=H.f.

The following results are useful in vector differential calculus.

Result 1.4.1. If U and V are matriz functions, then

(a) wvec(dU) = dvec(U)

(b) dU|=|Utr(UdU)

(¢) aU™'=-U'(aU)U™!

(d) d(trU) = tr(dU)

() dUeV)=dUV +U®dV
(f) d(loglU|)=tr(UdU)

(9) d(UV)=(dU)V +U (dV)
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1.4.2 Special functions

Definition 1.4.1. The digamma function is the logarithmic derivative of the gamma

function and is defined by

P(x) = %log I'(x), x>0.

1.4.3 Probability distributions

Here we summarize the main properties of the distributions used throughout this thesis.

1.4.3.1 TUniform distribution

Definition 1.4.2. A scalar random variable x has a uniform distribution with mini-
mum value a and maximum value b, written x ~ uniform(a,b) if its density function
18

1
_ —a a<lx< b
x) =
p(@) { 0 , otherwise.

1.4.3.2 Bernoulli distribution

Definition 1.4.3. A scalar random variable x has a Bernoulli distribution, written

x ~ Bernoulli(p), where 0 < p <1, if its density function is defined to be

() p*(1-p)t® | =01
€T =
b 0 , otherwise.
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1.4.3.3 Beta distribution

Definition 1.4.4. A scalar random variable x has a Beta distribution with shape
parameters a, 8 >0, written x ~ Beta(a, 3), if its density function is defined to be

T (1-2) | 0<z<t

0 , otherwise.

1
p(x) = { )

The normalising constant B(«, 8) is known as the Beta function and is expressed as

I(a+B)/T(e)I(5).

1.4.3.4 Normal distribution

The Normal distribution, also known as the Gaussian distribution, is the most widely used

distribution for continuous variables.

Definition 1.4.5. A scalar random variable x has a Normal distribution with mean

p and variance o > 0, written x ~ N(u, 0?) if its density function is

1 (z - p)*
p(x) = WGXP{_T}‘

Definition 1.4.6. The notation ¢(-) is used to denote the standard normal density
function, that is x ~ N(0,1):

Thus, for general mean y and standard deviation o, that is if 2 ~ N(u,0?), then

o) =~ (1),

g
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Definition 1.4.7. An n x 1 vector of random variables  has a Multivariate normal
distribution with n x 1 mean vector p and n xn positive-definite covariance matriz 3,

written & ~ N(w, X) if its density function is

p(x) = 2m) PP exp (3 (- ) =7 (z - w)}.

1.4.3.5 Gamma distribution

Definition 1.4.8. A scalar random variable x has a Gamma distribution with shape

and rate parameters A, B >0, written x ~ Gamma(A, B), if its density function is

F]?::)ZL‘A_l exp{-Bzx} , x>0
p(x) = ‘
0 , otherwise.

Result 1.4.2. If 2 ~ Gamma(A, B), then for any ¢ >0,

cx ~ Gamma(A, B/c).

1.4.3.6 Inverse-Gamma distribution

Perhaps the main use of the Inverse-Gamma distribution is in Bayesian statistics, where

it is used as an analytically tractable prior distribution for the variance parameters.

Definition 1.4.9. A scalar random wvariable © has an Inverse Gamma distribution
with shape and rate parameters A, B > 0, written x ~ Inverse-Gamma(A, B) if its
density function is

A A
FBEA)ZL'AleXp{—g} , >0
p(x) = .
0 , otherwise.

10
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Result 1.4.3. If x ~ Inverse-Gamma(A, B), then
E(1/z) = A/B, E{log(z)} =log(B)-v¥(A),

where 1 is the digamma function as defined in Definition 1.4.1

Result 1.4.4. If z ~ Gamma (A, B), then

1/z ~ Inverse-Gamma(A, B).

Result 1.4.5. Ifz ~ Gamma(%, %), then x s identical to the chi-squared distribution

with v degrees of freedom x2.

1.4.3.7 Half-Cauchy distribution

Often, alternative scale parameter priors are desired. Gelman (2006) argues that Half-
Cauchy densities are better for achieving non-informativeness of scale parameters. The
Half-Cauchy distribution is a special case of the conditionally-conjugate folded-noncentral
t family of prior distributions for the standard deviation parameter and tends to give

cleaner inferences.

Definition 1.4.10. A scalar random variable x has a Half-Cauchy distribution with

scale parameter A >0, written x ~ Half-Cauchy(A), if its density function is

2
— 0
p(z) = { T v

, otherwise.

The following result is Result 5 of Wand, Ormerod, Padoan and Frithwirth (2011):

11
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Result 1.4.6. Suppose that x and a are random variables such that
xla ~ Inverse-Gamma(1/2,1/a) and a ~ Inverse—Gamma(%, 1/A?).

Then, \/x ~ Half-Cauchy(A).

1.4.3.8 Wishart distribution

Definition 1.4.11. An n x n matrix X has a Wishart distribution with degrees of
freedom a > 0 and positive definite rate matriz B, written X ~ Wishart(a, B), if its

density function is

051[1 |B|a/2 |X|(a_"‘1)/2 exp{—ltr (BX)} ’ X symmetric
p(X) = ’ 2 and positive definite

0 , otherwise,

where Ch, g = 2027 (=DIATIY T ((a +1-14/2)).

Result 1.4.7. If X ~ Wishart(a, B), then

E(X)=aB™.

12
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1.4.3.9 Inverse-Wishart distribution

The Inverse-Wishart distribution is commonly used as the conjugate prior for the covari-

ance matrix of a multivariate normal distribution.

Definition 1.4.12. An n xn matric X has an Inverse-Wishart distribution with
degrees of freedom a > 0 and positive definite scale matric B, written X ~

Inverse-Wishart(a, B), if its density function is

C, L 1B | X[ D2 exp{-Ltr (BX )} X symmetric
p(X)= ”7“ 2 and positive definite

0 , otherwise,

where Cy, o = 2027 (=DATIY T ((a+1-1i/2)).

Result 1.4.8. If X ~ Wishart(a, B), then

Xt~ Inverse-Wishart(a, B).

1.4.3.10 Multinomial distribution

Definition 1.4.13. A wvector of random wvariables © = (x1,...,x) where x; takes
on wvalues 0,...,n, has a Multinomial distribution with number of independent
trials m > 0 and probabilities of success p = (p1,...,pk), written x1,...,TE ~
Multinomial(n, p1, ... ,pk), if its density function is

!

Result 1.4.9. Suppose that x1, ...,z ~ Multinomial(n,p1,...,px). Then,

E(x;) = np;.
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1.4.3.11 Dirichlet distribution

Definition 1.4.14. A vector of random variables © = (x1,...,x) has a Dirichlet dis-
tribution with parameters asq,...,ar > 0 written p(x1,...,x,) ~ Dirichlet(aq, ..., o)

if its density function is

1 ko
p(xy,...,x5) = ———— [ [ ;Y
B(al,...7ak)g !
for all x;,...,xx >0 satisfying Zle x; = 1. The normalizing constant is known as the

multinomial Beta function, which can be expressed in terms of the Gamma function

as:
_ Hf:l P(Oéi)

B(al,...,ak) I‘(Zk a‘).
1=1"%"

Result 1.4.10. Suppose that x1,...,x ~ Dirichlet(a,...,ar). Then,

K K
E(z;) = oz,-/ Y ag, Ef{log(z)} =v(a) - | > o).
k=1 k=1

1.4.3.12 Normal mixture distribution

Definition 1.4.15. A scalar random variable x has a normal mizture distribution
with K weighted sum components, written p(x;w, w, d?) ~ Normal-Mizture(w, g, 0?),

if its density function is

K
p(zyw, p, o) = 3wy, (2m03) M exp {L(x - up)?fo}}

k=1
where w = (w1,...,wk) are the mizture weights, pw = (u1,...,px) are the mizture
means and o = (0%, e ,O'%() are the mizrture variances associated with each kth com-

ponent density.
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1.4.4 Useful vector and matrix results

Result 1.4.11. If a and b are vectors of equal length then diag(a)b=a ®b.

Result 1.4.12. If A and B are matrices such that the product AB can be formed,
then
tr(AB) =tr(BA).

Result 1.4.13. If A and B are m x n matrices, then tr(A"B) = vec(A) vec(B).

Result 1.4.14. If A, B, C, D are matrices such that the products AC and BD can
be formed, then
(A®B)(Ce®D)=(AC)® (BD).

Result 1.4.15. If A is an m xm matriz and B is an n xn matriz, then

tr(A® B) = tr(A)tr(B).

Result 1.4.16. If A, B, C, D are matrices such that ABCD is a square matriz,
then
tr(ABCD) =vec(D)"(A® C")vec(B").

Result 1.4.17. Let x be a random vector. Then

E(| %) = E(x) |*> +tr {Cov(z)} and E(zxx')=E(z)E(z)" + Cov(x).
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Result 1.4.18. Let x be a random vector and A be a random matriz. Then

B(u"Au) = {E(u)}T A{E(u)} +tr { Cov(u)A}.

Result 1.4.19. Let a be constant vector, let b be a random wvector, and let C be a

constant matriz with the same number of rows as b. Then

E(| a-Cb|?) =| a-CE(b) ||*> +tr {C Cov(b)C"}.

Result 1.4.20. Let x and y be n x1 random vectors such that x is conditioned on y.
Then,
Couv(y) = E{Cou(y|z)} + Cov{E(y|x)} .

1.5 Mean field variational Bayes

Let us consider a general Bayesian model with parameter vector @ and observed data
vector y. As discussed earlier, even for simple models, it is often the case that the posterior
density function p(8|y) is intractable. To overcome this problem, we employ MFVB where
the objective is to find a tractable distribution ¢(@) that closely approximates the true
posterior distribution p(@|y). For example, we wish to replace the joint posterior density
function p(B8ly) with an approximating density function ¢(0) that assumes the product

density form

k
q(0) = [T ai(6:) (1.1)
i=1
for some partition {61, ...,60x} of 8. Tractability is a major factor on the choice of parti-
tion of the approximate density function ¢(01,...,0y). The so-called g-densities are then
chosen to minimise the Kullback-Leibler distance between the two density functions:

p(0ly)
/log{ 0 }q(e)da
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1.5. MEAN FIELD VARIATIONAL BAYES

subject to (1.1). Note that the integrals are replaced with sums in the case of discrete
variables, however in this thesis we assume @ to be continuous over the parameter space
©. An equivalent optimization problem, attained through standard manipulations, is to

maximise:

p(y;q) = exp f q1(01) ...qx(0x) log{q1 (of?)(y’oqi(ow } deé ...deoy (1.2)

where ]_)(y; q) represents the lower bound on the marginal likelihood p(y) for all g-densities.

Taking the logarithm of (1.2) gives

logp(y;q) o [ qi(01)logp(y,01)d01 ~ [ q1(01)logqi(01)d6 (1.3)
where
logp(y,01) = [logp(y,0)q2(02) x ... x qr(0r)dO>...dO

E_g, {logp(y.0)},

where E_g, is the expectation with respect to all factors except ¢1(61). By recognising
that (1.3) is the negative Kullback Leibler divergence between ¢;1(601) and p(y, €1), we note
that the minimum occurs when ¢;(01) = p(y,01). Thus we obtain a general expression

for the optimal solution ¢ (1) given by

q1 (01) o< exp {E_g, logp(y,0)} .

This can be generalized to an expression for the optimal ¢-density for each of the i factors:
q;(0;) < exp{E_g, logp(y,0)}, 1<i<k.
It is easy to show that an alternative expression for ¢; (6;) is
4 (0;) < exp{E_g, logp(B;frest)}, 1<i<k, (1.4)

where ‘rest’ is the set comprising the random variables in the model, except for 6;. An
iterative coordinate ascent scheme induced by (1.4) is then used to find the optimal param-
eters in these g-densities. If conjugate priors have been used, then the optimal ¢-densities
belong to known density families (e.g., Winn & Bishop, 2005).

Assuming that each iteration results in an increase in logp(y;q), and the search re-

stricted to a compact set, then convergence is guaranteed to a local maximiser of log ]_j(y; q)
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(Luenberger & Ye, 2008, p. 253). Convergence can be monitored using successive values

of log p(y;q).

1.6 Variational message passing

Variational message passing (VMP) is an alternative to MFVB which results in exactly
the same answers, but instead works with “messages” that are passed between neighbour-
ing nodes on the factor graph of the model. Factor graphs will be discussed in detail in
Chapter 7. VMP is primarily concerned with conjugate exponential family distributions,
represented by their natural parameter versions of the distribution. An in-depth expla-
nation as well as a discussion on the advantages and disadvantages of VMP is given in

Chapter 7.

1.7 Non-conjugate variational message passing

Non-conjugate variational message passing (NCVMP) is an extension of VMP which ob-
viates the restriction of only being able to work with conjugate exponential family distri-
butions, whilst maintaining the purely algebraic form of the optimal parameters (Knowles
& Minka, 2011). The modularity of NCVMP allows modification only to those model pa-
rameters that involve previously intractable solutions, whilst keeping the VMP or MFVB
solutions of the other parameters in the model. As a result, NCVMP broadens the class
of tractable models for approximate inference using VMP and/or MFVB.

Suppose we approximate the joint posterior density function p(8, ¢|y) by the product

density form

q1(01) .. ak(O) ap (), (1.5)
where 6 = {601,...,0;}. From Section 1.5 we see that the solutions satisfy

q; (8;) < exp{E,(_q,)logp(8ily,0\0:,¢)}, 1<i<k,
q;ﬁ((»b) o exp {Eq(—d)) 10gp(¢|yv 0)} )

where 6\0; represents the model parameters 6 without ;. When E,(_g)logp(¢|y, @) does
not offer a tractable solution, NCVMP can be used by replacing (1.5) with

q1(01) ... qr(0k) qp(P;m),
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where gqg(¢;n) is forced to have an exponential family density function with natural
parameter vector n and natural statistic T'(¢). Then, using Theorem 1 of Knowles &

Minka (2011) to find an update for n and regular MFVB for the other parameters, we get

q; (0;) < exp { Ey(_q,)log p(0ily,0\0;, )}, 1<i<k,

] (1.6)
n < [var {T(¢)}]™" [DyEy0,6) {logp(y,0,¢)}] .

This thesis only considers the case where ¢(¢;n) corresponds to a d-dimensional Mul-
tivariate Normal density function. For this special case, Wand (2014) explains that the
number of entries in var {T'(¢)} is quartic in d and thus the n update in (1.6) becomes

numerically challenging. To get around this, Wand (2014) proves that

n < [var {T(¢)}]™" [DnEye6.6) {logp(y,0,9)}]'
is mathematically equivalent to the following updates
T
Ye(p) < (Dﬂq(@s)
> 2vec (D Sy
a(¢) {_ vee (( vec(Zg)) ))}

Bae) < Ha(e) T Xq(¢)Va(9)

where

S = Eq(G,d)) {1ng(ya Oa ¢)} .

vec and vec™!

are defined in Section 1.3.1 and D represents the derivative vector which is
defined in Section 1.4.1. However, to get around using the vec operator, a result given in
the appendix of Opper & Archambeau (2009) shows that an equivalent representation of

the second of these updates is

2q(¢) < (_Hltq(qs)‘s’)_l

where H represents the Hessian matrix and is defined in Section 1.4.1. The proof of this
result is given in Appendix 3.C of this thesis. We work with this alternative form when

using NCVMP.

1.8 Graphical models

One of the engaging aspects of graphical models is that a particular graph has the ability to

make probabilistic statements for an extensive class of distributions. In particular, we focus
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on the use of graph representations of hierarchical Bayesian models, as they are an effective
tool in understanding the conditional dependence structure of these models. Graphical
models aid in the calculation of the imposed product factorisation on the posterior p(8|y)
which is involved in the initial stages of MFVB. As a result, an additional partition of the
dependence structure in the model, known as an induced factorization (Bishop, 2006), is
then possible. Both of these factorizations are subject to the type of imposed factorization
and the underlying structure of the model. Graphical models are a very useful tool in
aiding our understanding of these factorizations. These are defined and outlined in more

detail in the following section.

1.8.1 Directed acyclic graphs

A graph comprises a set of nodes together with a set of edges, where edges are placed
between pairs of nodes. In this thesis, nodes are depicted as circles and edges are depicted
as line segments. Also, we use the notation a 1 b|c to denote that a is conditionally

independent to b given ¢, in a graphical model setting.

Definition 1.8.1. A graph is an undirected graph if it comprises a set of nodes

connected by undirected edges.

Definition 1.8.2. A graph is a directed graph if it comprises a set of nodes connected

by directed edges.

Definition 1.8.3. In a directed graph, a path between a set of nodes is a cycle if all
directed edges in the path meet the nodes head-to-tail throughout the path.

Figure 1.1 illustrates examples of an undirected graph, directed graph and a cycle.

Definition 1.8.4. A directed graph which has no cycles is acyclic. This is referred
to as a directed acyclic graph (DAG).
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b C d
(c)

Figure 1.1: (a) Example of a directed graph. (b) Example of an undirected graph. (c) A
directed graph which has cycle (a,c,b).

Throughout this thesis, we will use DAG as shorthand for directed acyclic graph. Figure
1.2 displays a simple example of a DAG.

As mentioned previously, graphical representations of hierarchical Bayesian models are
an effective tool in understanding the conditional dependence structure of such models.
This is achieved when we consider the nodes on a DAG to represent the random variables
in the model, and the directed edges to represent the conditional dependence structure of
the model. It is often easier to think of a DAG as a family tree, where a directed edge

represents a child-parent relationship within the family.

Definition 1.8.5. In a DAG, if two nodes are connected by a directed edge then the
node connected by the arrow-head is the child and the node connected by the tail is

the parent. If two nodes have a child in common, they are known as co-parents.

Definition 1.8.6. Within a DAG, the Markov blanket of a node is the set containing

the node’s children, parents and co-parents.
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Markov
blanket

{} {e.dy {} {e.dj
{c.e} {} {c.e}

node children parents co-parents

S, TR Q0 R
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Figure 1.3: Left panel: Example of a DAG. Right panel: Table of each node’s corresponding
children, parents, co-parents and Markov blanket from the given DAG.

Figure 1.3 illustrates the family tree terminology for a given DAG, including its Markov

blanket. We now turn our attention to probabilistic DAGs where the nodes represent

random variables {1, ...,z } with joint density function p(x1, ..., xx), given by Definition
1.8.7.
Definition 1.8.7. The joint density function of the random wvariables z1, ...,z rep-

resented by nodes in a DAG is given by

k
p(ar,....a1) = [ plai | parents of ).
=1

DAGs aid in the calculation of the full conditional distributions as is clear from the fol-

lowing definition.
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Definition 1.8.8. The full conditional distribution of a node x; is the distribution of

x; given all of the other random variables in the DAG, and is denoted by p(x;|rest).

The following result shows that probabilistically we can separate each node and its corre-

sponding Markov blanket with the remainder of the DAG.

Result 1.8.1. Let p(x1,...,x%) be a density function defined on a DAG. Then

p(x;|rest) = p(z;|Markov blanket of z;), 1<i<k.

Result 1.8.1 corresponds to Section 3.2 of Jordan (2004). Making use of Result 1.8.1 in

equation (1.4) we now have the optimal ¢-densities satisfying
q; (z;) o< exp { E_z, log p(z;|Markov blanket of x;)}, 1<i<k. (1.7)

This is known as the locality property of DAGs and can be extremely important when

performing MFVB on large models.

1.8.2 Moral graphs

Moral graphs are undirected graphs that are constructed from DAGs by forcing the im-

moral parents of a common node to get married.

Definition 1.8.9. The moral graph of a DAG is constructed by adding an undirected
edge between all pairs of parents of a node that are not already connected and turning

all directed edges into undirected edges. This procedure is referred to as moralisation.

The following two definitions deal with ancestral sets, which are useful for results concern-

ing probabilistic graphs.
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Definition 1.8.10. An ancestral set is a set of nodes in a DAG such that for each

node in the set, all of its parents are also in the set.

Definition 1.8.11. Let S be a subset of nodes in a DAG. Then the ancestral set
containing S that has the fewest number of nodes is the smallest ancestral set

containing S.

The above definitions aid in the construction of the Theorem 1.8.1.

Theorem 1.8.1. If A, B and C are disjoint node subsets in a DAG then A 1L B|C
if C separates A from B in the moral graph of the smallest ancestral set containing

AuBuC.

Theorem 1.8.1 corresponds to Corollary 3.23 of Lauritzen (1996).

1.8.3 Graphical models viewpoint of mean field variational Bayes

When considering the conditional independence structure of a DAG, the main benefit of
incorporating moral graphs and ancestral sets for MF'VB is their extremely simple nature
compared to that of d-separation (Bishop, 2006). For example, consider the Bayesian

hierarchical Gaussian linear mixed model:

y|/67 u, 052 ~N (X,@ + Zuv (T?I) ’ u|012L1701212’ 0—1213 ~N (0’ blOdeiag (01211 ’ 01212’ 053)) )

B~N(o, O’%I) , 05, ~Inverse-Gamma ~ (Ay,, By,), 1<£<3, (1.8)

2
oZ ~ Inverse-Gamma ~ (4., B:),

for ag, Ay, Buy,, Ac, B: >0 and where y is a vector of responses and X and Z are design

matrices. Also, 3 and u are vectors of fixed effects and random effects, respectively, and

02 02 .02 and o2 are variance parameters. Figure 1.4 shows the DAG and corresponding

uy? - u2? us
moral graph for (1.8) where the shaded node corresponds to the observed data vector.

Random effects and auxiliary variables are referred to as hidden nodes. The conditional
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Figure 1.4: (a) DAG representing model (1.8). (b) Moral graph of DAG in (a).

dependence structure of (1.8) is illustrated through the directed edges in the DAG in
Figure 1.4 (a).
MFVB is focused around imposing a product restriction on the joint posterior density

function. For instance, we may impose the restriction

2 2 2 2 2 2 2
q(ﬁv u, ulv UQﬂo-u?)’o-E):q(ﬁ?u)Q(UU17UUQ’0-’lL3’O-€)' (19)

The right-hand side of (1.9) corresponds to removing the edges connecting 3 with o2,

u with ag uw with o2 , uw with ¢2 , and u with 033 in the moral graph in Figure 1.4

uy? ug?

(b). A tractable solution indeed arises for this product restriction, however to illustrate
the simplicity of using moralisation for induced factorisations, we assume that a further
breakdown is necessary.

Let A = {a } B=02and C = {y,3,u}. The smallest ancestral set containing

ul? u27 u3

AuBuC( is the entire DAG. It is also evident from the moral graph that all paths between

{031,052,053 and 0'52 must pass through at least one of {y,3,u}. Therefore, adopting

Theorem 1.8.1 we see that

{0-51’ uz? }J-Lo-a| {y’/@7u}

and hence (1.9) is updated to

Q(/B) u, u17 121,27 u37 5) Q(Bau)Q(Uula ug)? u3)Q( )
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Often, the use of induced factorisations is very beneficial, especially when considering
increasingly complex models. The use of moral graphs enables detection of these factori-

sations which results in efficient derivations of MFVB solutions.

1.9 Accuracy measure of mean field variational Bayes

The accuracy of MFVB can range from excellent to relatively poor, depending on the
structure of the DAG and type of product restriction imposed on the model i.e. number
of edges removed. This section gives detail on the accuracy measure used to assess the
performance of MFVB against its MCMC benchmark.

Let 6 represent a generic univariate parameter. We are interested in measuring the
accuracy of an MFVB approximate density ¢*(#) with respect to the exact posterior
density p(fly). There are various ways in which this can be done. Faes et al. (2011)
recommend working with the L; loss, or integrated absolute error (IAE) of ¢*(6). This

quantity is given by

IAE{q"(6)} - f "l (0) = p(Oly)ldb.

The fact that IAE {¢*(0)} lies between 0 and 2 gives motivation to the accuracy measure

accuracy {¢*(0)} =1- %IAE {a*(0)},

1

5IAE {¢"(0)} is the total variation metric corresponding to the prob-

where the quantity
ability measure induced by p(f|y) and ¢*(#). Since 0 < accuracy {¢*(6)} <1 and thus can
be expressed as a percentage. The posterior p(f|y) can be approximated quite well by

performing MCMC with sufficiently large sample sizes.

1.10 O’Sullivan penalised splines

O’Sullivan splines are an immediate generalisation of smoothing splines (e.g. Green & Sil-
verman, 1994). Prior to the mid-1990s, smoothing splines were of particular interest in the
spline-based non-parametric regression literature. This involved the number of basis func-
tions approximately equal to the sample size (e.g. Wahba, 1990; Green & Silverman, 1994).
O’Sullivan penalised splines possess the attractive feature of using considerably fewer basis

functions, and their natural boundary conditions make them a very reliable choice of basis
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in semiparametric and nonparametric regression. Wand & Ormerod (2008) give a detailed
description of how O’Sullivan penalised splines can be added to the mixed model-based
regression setting including examples with R code. We summarise the approach here.

Consider the simple non-parametric regression setting:
yi = f(x;)+e&;, 1<i<n,

where (x;,9;) € R xR. Suppose we are interested in an estimate of f over the interval
[a,b] comprising the x;s. For K <n, let By, ..., Bx.4 be the cubic-B-spline basis functions
defined by the knot sequence a = k1 = kg = K3 = K4 < K5 < ... < KK44 < KK+5 = KK+6 =
Kik+7 = Kigs+s = b. We require a function that minimises the penalised residual sum of

squares

RSS(/.) = 3= F@0) +A [ {f (@)} (1.10)

where A > 0 is a smoothing parameter. The solution is the O’Sullivan penalised spline

f(x) = Bv and thus (1.10) reduces to
RSS(v,\) = (y- Bv)'(y - Bv) + \v'Qu (1.11)

where Bji = Bi(x;), and Qg = fab B,:(x)Bg,(ac)dx. It is easy to see that the solution to
(1.11) is

v=(B"B+\Q) 'BTy (1.12)

and the fitted O’Sullivan penalised spline is thus given by f () = Bv. Computation of
the design matrix B is fairly straightforward, however computation of €2 can be some-
what challenging. Using the theorem in Section 6 of Wand & Ormerod (2008) we get an

expression for €2:
Q= (B") diag(w)B" (1.13)

where B is the 3(K +7) x (K +4) matrix with (i, j)th entry equal to B;l(.fz‘) and Z; is the
ith entry of & = (k1, (K1 + K2)/2, ko, K2, (Ko + K3) /2, K3, ..., K47, (KK+7 + KE+8)[2, KK +8)-
Also, w is the 3 (K +7) x 1 vector given by
w = (% (An)l ) % (An)l ) % (An)l ) % (AH)Q ) % (AR)Q ) % (AR)2 Yt % (AH)K+7’
% (AFL)K+7 ) % (AR)K+7) )
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where (Ag), = KK+1 — Kk, 1 < k < K. The expression in (1.13) involves Simpson’s rule,
which is applied over each of the inter-knot differences. For more detail on the construction
of (1.13) see Section 2 of Wand & Ormerod (2008). Throughout this thesis we work
with mixed model representations of Bayesian hierarchical models and thus show how to

incorporate O-Sullivan penalised splines using this representation in the following section.

1.10.1 Mixed model representation

The penalised splines can be written in a linear mixed model form:

0 o2I 0
e )

u
=XB+Zu+e
Y p , [ € 0 o?I
where X =[1 x;]1<i<n and Z are design matrices and Z contains B-spline basis functions.

A convenient form of expressing £ in (1.12) is by using best linear unbiased prediction

(BLUP) of B8 and u (e.g. Ruppert et al., 2003, Section 4.5.3). This leads to

-1
T 0 0 T
:(c c+>\[0 I]) C'y, (1.15)

where \ = 02/0% and C = [X|Z]. The equivalence of (1.15) and (1.12) can be quantified

U=

B
i

by using a (K +4) x (K +4) linear transformation matrix L such that

00
o I|

Wand & Ormerod (2008) show that the spectral decomposition of €2 has the form Q =

C=BL and L'QL-=

Udiag(d)U", where UTU =TI and d is a (K +4)x 1 vector with 2 zero entries and all others
positive. Also, the linear transformation matrix L has the form L = [U x|U z diag(d;/ ],
where dz is the (K +2) x 1 sub-vector of d containing the positive entries and U z is the
(K +4) x (K +2) sub-matrix of U with columns corresponding to the positive entries in
d. Therefore, O-Sullivan penalised splines can be used for fitting (1.14) with the following

design matrices:
X=-BUx and Z-= BUZdiag(d;/2) :

whilst keeping in mind that BU x is a basis for straight lines (Speed, 1991), and using X
instead will not affect the fit.
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1.11 Statistical software

Many semiparametric and nonparametric regression models can be formulated as hierar-
chical Bayesian models. An upside to this type of formulation is that MCMC software for
these type of models can easily be used for fitting and inference. It is possible to tackle
different semiparametric regression contexts through the use of BUGS (Bayesian inference
Using Gibbs Sampling) inference engine (Spiegelhalter et al., 2003).

In the R computing environment (R Core Team, 2013) BUGS can be accessed through
the package BRugs (Ligges et al., 2009), thus enabling complete analysis through a single
R script. At the moment, BRugs is only compatible with the Windows operating system
communicating through a version of BUGS known as OpenBUGS (Thomas et al., 2006).

MCMC samples can also be obtained using Stan (Stan Development Team, 2014)
through the R computing environment, made possible using the rstan package (Stan De-
velopment Team, 2014). Stan implements Bayesian inference using Hamiltonian Monte
Carlo (HMC) sampling, written in C +4. An alternative to MCMC, which we explore
in this thesis, is the variational approximation and in particular MFVB. Some inference
engines have come to light recently for performing variational inference using graphical
models. These include VIBES (Bishop et al., 2003), short for Variational Inference for
BayESian networks and Infer.NET (Minka et al., 2008). Even though a very useful tool
in variational approximations, we do not make use of VIBES or Infer.NET as they do not
cater to the complexity of most of the models considered in this thesis.

In summary, graphical model-based Bayesian inference engines such as BUGS, Stan
and Infer.NET, currently entertain a large variety of semiparametric and nonparametric
regression settings (e.g. Marley & Wand, 2010; Luts et al., 2014). BUGS and Stan both
make use of Monte Carlo methodology, which is extremely accurate but can be quite slow.
Infer.NET on the other hand makes use of variational approximations, such as MFVB,

which are slightly less accurate but much faster.

1.11.1 Example in BRugs and RStan

Here we present R code for the simple Binomial model with Beta prior:

X|p ~ Binomial(n, p)
p ~ Beta(A, B).
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After specification of the data, sample size n, probability p, and the two hyperparameters

A and B, the model in BRugs takes the form:

# Specify model in BRugs:

model
{
for(i in 1:n)
{
x[i] ~ dbern(p)
}

p ~ dbeta(A,B)

Whilst coding the model in RStan is of the form:

# Specify model in RStan:
binomBetaModel <- ’
data
{
int<lower=1> n;
int<lower=0,upper=1> x[n];
}
parameters
{

real<lower=0,upper=1> p;

model

for (i in 1:n)
x[i] ~ bernoulli(p);
p ~ beta(A,B);binomBetaModel
}7

Throughout this thesis, we make use of both BRugs and RStan for MCMC sampling.
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1.12 The flow of the thesis

The primary aim of this thesis is to determine whether MFVB can be used as an alterna-
tive to traditional methods for performing inference in semiparametric and nonparametric
regression settings. We show that this is possible for various regression settings to allow
for fast approximate inference when traditional inference is time consuming or intractable.
Each chapter in this thesis is dedicated to the development of an MFVB algorithm catered
to a particular model setting. In some instances this requires extension of previously de-
veloped MFVB methodology to the model being considered, whereas in others, it involves
the original development of an MFVB algorithm. We then use various diagnostic tech-
niques to assess the efficacy of the MFVB algorithm in terms of convergence, timing and
accuracy.

Chapter 2 sees the development of an MFVB algorithm for the marginal longitudinal
semiparametric regression setting. There are numerous contributions to the topic, how-
ever we focus on the Bayesian penalised spline approach of Al Kadiri et al. (2010) who use
MCMC as an effective way to fitting their class of models and thus we present a compar-
ison of both approaches. The main contribution here lies in the MFVB algorithm being
one of the first variational algorithms to involve estimation of an unstructured covariance
matrix. In Chapter 3, a modification of MFVB is discussed, known as non-conjugate vari-
ational message passing, which aids in the incorporation of heteroscedasticity, whilst also
involving only closed form algebraic expressions. Chapter 4 looks into the development of
MFVB algorithms for three extensions of the heteroscedastic setting given in Chapter 3.
This includes an algorithm catered to performing semiparametric regression in real time,
bivariate predictor nonparametric regression and in an additive model setting. Accuracy
scores and time comparisons are also considered as an effective assessment of the algo-
rithms used. In Chapter 5 we focus on the development of MFVB algorithms for fitting
large data sets that exhibit multilevel and longitudinal structures. In particular, we take
advantage of a streamlined approach to fitting these type of data. Two types of models
are considered: two-level and three-level Gaussian response models. Each are motivated
by a corresponding real dataset. Chapter 6 is concerned with MFVB inference for mixture
models in measurement error problems. This chapter is heavily motivated by the area of
epidemiology, where measurements often do not get measured accurately on all subjects.

In Chapter 7, we present a discussion about an alternative approach to MFVB known as
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variational message passing, which produces identical results to MFVB but is based on
a different algebraic system that allows easier extension to arbitrarily large models. We

show this approach for the models considered in Chapter 2 and 6.
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Chapter 2

Mean field variational Bayes for
marginal longitudinal

semiparametric regression

2.1 Introduction

The definitive property of a longitudinal data set is repeated measurements on subjects
enabling direct study of change over time. Longitudinal data hence require non-traditional
statistical methods, since the set of measurements on one subject tends to be intercor-
related, which must be taken into account when drawing statistical inferences. Over the
past decade, a great deal of exposure of longitudinal data in semiparametric regression has
emerged. In particular, the special case in which the covariance matrix for each subject’s
responses is treated as an unspecified parameter to be estimated. This is known as the
marginal longitudinal semiparametric regression problem. Benefits to marginal longitudi-
nal semiparametric regression analysis include flexible estimation of regression functions
and marginal estimation of the covariance matrix of the response vector for each subject.

A proliferation of contributions to the topic emerged in wake of Lin & Carroll (2001)
showing that ordinary kernel smoothers are more efficient if working-independence is as-
sumed. A summary of research on this problem prior to 2007 is outlined in Ruppert et al.

(2009, section 3.9). One estimation method for marginal models is MCMC. The primary

The content of this chapter is published as: Menictas, M. and Wand. M.P. (2013). Variational inference
for marginal longitudinal semiparametric regression. Stat, 2, 61-71. This research was also presented at
the Young Statisticians Conference, Melbourne, 2013.
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aim of this chapter is to further discussions on the benefit of using a fast determinis-
tic alternative to MCMC known as MFVB, for the marginal longitudinal semiparametric
regression problem and some of its semiparametric extensions.

We focus on the Bayesian penalized spline approach of Al Kadiri et al. (2010) for
function estimation. For fitting, Al Kadiri et al. (2010) use MCMC as a fitting and
inference tool. However, they admit that such an approach is quite slow in estimation.
Their real data example takes almost an hour to run on a contemporary laptop when
using BUGS for the MCMC. The variational algorithm developed in this chapter, based
on the MFVB paradigm, fits the data in seconds with very similar results. In addition, our
algorithm is one of the first variational algorithms involving estimation of an unstructured
covariance matrix.

Section 2.2 provides a brief overview of the marginal longitudinal semiparametric re-
gression models considered in Al Kadiri et al. (2010). The corresponding MFVB algorithm
is developed in Section 2.3. Section 2.4 provides a simulation study for assessing the per-
formance of MFVB against that of MCMC. We provide a real data example in Section
2.5 and the appendices provide algebraic details tied to the methodology in this chapter.

2.2 Marginal longitudinal semiparametric regression mod-

els

Nonparametric techniques have recently come into view as an effective way to model
longitudinal data. Longitudinal data comprise repeated measurements which are recorded
over time on the same subject. We use y;; to denote a measurement for the ith subject
at the jth time point. Let y; = (vi1,. .., ¥in) be the vector of responses, x; = (2;1, ..., Tin)
be the vector of predictors for the ith subject, where 1 <¢<m and 1< j < n.

As such, the marginal longitudinal nonparametric regression model is
E(yij) = f(2i5),  Cov{ylf(xi)} =%, 1<i<m, 1<j<n, (2.1)

where we assume that the mean function f is a real-valued smooth function, and the
covariance matrix 3 has dimension n x n. In order to allow for cases where f(x;) is
random as specified by the model, rather than using Cov (y;) to denote the covariance of

y,, we use Cov {y,|f (x;)}. Figure 2.1 shows, by example, a simulated data set for model
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Figure 2.1: A data set simulated from the marginal longitudinal nonparametric regression
model (2.1) with m =100, n=5 and f and ¥ are as described in (2.2).

(2.1), with m =100, n = 5,

[ 0.160 0.120 0.090 0.068 0.051
0.120 0.160 0.120 0.090 0.068
f(z)=1.5+sin(0.2(z/2-4))) and =] 0.090 0.120 0.160 0.120 0.090 |. (2.2)

0.068 0.090 0.120 0.160 0.120
| 0.051 0.068 0.090 0.120 0.160

We are interested in efficient estimation of f and 3 from data such as that shown in Figure
2.1. The procedure we use to obtain the mean function estimate involves spline models

for f of the form

K
f(x)=bo +/J’1:v+kz ukzr (), (2.3)
=1

where z, 1<k < K represents a set of suitably transformed cubic O’Sullivan splines, as
described in Section 1.10. The quantity of spline basis functions K has a small effect on
the adequacy of (2.3). However, in practice, K = 25 is a sufficient choice for most spline
basis functions (Li & Ruppert, 2008). In order to prevent over fitting of the function, we
penalize the spline basis function coefficients ug, 1 < k < K, by treating them as a random

sample from a distribution which has a mean of zero and a variance of 0. This allows for
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the following linear mixed model representation of (2.1) and (2.3):

y=XB+Zu+e (2.4)
where
Yy 1 x z1(x1) ... zr(x1) €1
y: : ) X: : ) Z: : ’ : ) €= : )
Y, 1 x, 21 (Xm) - 2r (Xm) Em
U1
B= bo , and wu-=
A
UK

u oI 0 0 0
e o X 0 ... 0
! a1 0
Cov|l e9 |=] O 0 X ... 0 |= .
0 I,9X%X
lem | | O 0 0 ... 2|

The model for the distribution of u and € is

HE( S|

Sections 2.2.1, 2.2.2 and 2.2.3 provide semiparametric extensions to model (2.1).

2.2.1 Additive models extension

There are various semiparametric regressions extensions of (2.1) that could be considered.
Here we consider the additive model extension. This involves the incorporation of several
continuous predictor variables for each scalar response variable. We restrict our discussion
to the incorporation of two continuous predictor variables x1;; and w2;; corresponding to

each y;;. In this case, the marginal longitudinal additive model is

E (yw) =Bo+ f1 (SUlij) + fo (:Ezz'j) )
Cov{yilfi (x1i), f2(x2:)} =%, 1<i<m, 1<j<n,

(2.6)

where we assume that the mean functions f; and fs are smooth functions and the covari-

ance matrix 3 has dimension n x n. The procedure we use to obtain the mean function
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estimates involve spline models for f; and fs of the following form:
Kl K2
fi(z1) = Buxy+ ) upzip (x1)  and  fa (x2) = Barxa + ) ugpzar (X2) (2.7)
k=1 k=1

with coefficients uy, = N(0,012), 1<k< Ky and ugp = N(0,022), 1<k < Ky. This

allows for the following Gaussian linear mixed model representation of (2.6) and (2.7):
y=XB+Zu+e.

The differences between this model and the one considered in Section 2.2 lie in the structure
of the design matrices. The design matrices are now
1 x11 x21
X=|1: : |, and

1 x1p, Xom

211 (Xll) s R1KY (Xll) 221 (X21) s 22K, (X21)
7 = : : : : ,

211 (Xim) - 21k, (Xim) 221 (Xom) ... 22K, (Xom)
where x7; is the n x 1 vector containing the x1;; measurements and xg; is the n x 1 vector

containing the x9;; measurements. The coefficient vectors are

Bo u

18 = 511 ) and u = [ ! ]7
u
B12 ?

where u; is the K x 1 vector containing the uix and wg is the K5 x 1 vector containing

the ug;. A convenient assumption for estimating 012, 022, and 3 is now

u1 0 0'121 0 0
uy [~NJ|| 0], 0 o’ 0 : (2.8)
€ 0 0 0 I,0%

Fitting via MF'VB is analogous to that described in Section 2.3. The difference here is that
there are two variance parameters o2 and o9 (where in extensions to additive models
with d smooth functions there will be d such variance parameters) as well as the error

covariance matrix X. A simpler type of additive model is

E (yij) = Bo + Brxij + fa (w2i5),  Cov{y,lx1i, fo (x2:)} = 3,

1<i<m, 1<j<n.
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This model represents a semiparametric regression model in the true sense, since the
right-hand side comprises a parametric component 81x1;; where the effect of the x1;;s are
modelled parametrically and a nonparametric component fo (x2;), where the effect of the
x2i;8 are modelled nonparametrically. This is a simpler model to that of (2.6), since there
is only one smooth function component. However, the linear mixed model corresponding
to this model is similar to that in Section 2.2, where the random component structure

(2.5) applies to (2.9).

2.2.2 Incorporation of interactions

Given the situation where an additive model is not guaranteed to provide a satisfactory
fit of the data, one may opt to incorporate an interaction term. Such an extension of (2.6)
is

E (i) = Bo+ Sz (2155) + f2 (22i5) ,

(2.10)
Cov{yi|fx3ij (xli)7 f2 (X2i)}227 ].Slém, 1Sj§n7

where the x3;; correspond to measurements on the categorical variable x3. For example,
if x3;; € {0,1} then we have E(y;j) = Bo + fo(z1ij) + fa(x2i;) if z3i; = 0 and E(y;5) =
B1+ fi(z1ij) + fa(@eis) if x3;5 = 1. Interaction models such as (2.10) have two important
uses. One of which is the ability to check for additivity in the model. This can be done by
testing the null hypothesis of a true additive model i.e., one without any interaction terms,
against the alternative hypothesis of the additive model involving interaction terms. If
the null hypothesis is accepted, we assume that using the additive model will provide a
reasonable fit to the data. Another important use of interaction models is the ability to
use alternative models when an additive model fails to fit the data well. When the null
hypothesis of an additive model is rejected, appropriate interaction terms are added to
the additive model.

The Gaussian linear mixed model for fitting (2.10) has the same structure as that of
fitting the additive model (2.6), where the only difference is the form of the design matrices
X and Z. An in-depth explanation including examples may be found in Ruppert et al.
(2003).
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2.2.3 Varying coefficient models

Varying coefficient models are another type of multiple-predictor semiparametric regres-
sion model, where the coefficients are allowed to vary as smooth functions of other vari-

ables. The model

E(yij) = fo(sij) + f1 (si5) wij,  Cov{ylfo(si)} =3,

1<i<m, 1<j<n,

(2.11)

is the simplest marginal longitudinal varying coefficient model, where s;; are the longitu-
dinal measurements on a continuous predictor variable s and z;; are the measurements
on a second predictor z. Model (2.11) shows that s has a modifying effect on the linear
relationship between E(y) and x, which is modelled through the varying coefficients fo(s)
and fi(s). The gaussian linear mixed model for fitting (2.11), has the same structure as
that for fitting the additive model (2.6), where the only difference is the form of the design

matrices X and Z. Relevant details are provided in Section 12.4 of Ruppert et al. (2003).

2.3 Mean field variational Bayes methodology

Each of the marginal longitudinal semiparametric regression models in section 2.2, and
their extensions to d smooth functions, can be treated using the Gaussian linear mixed

model

ylu,~ N (XB+Zu, 1,0%), wulg?~N (O,blolclzddiag (U?IKZ)) , (2.12)
<t<

where K, corresponds to the number of spline basis functions used in the ¢th smooth
function estimate. Maximum likelihood and best prediction can be used as inference
strategies for constructing estimates of the regression function f. Al Kadiri et al. (2010)
discuss that, despite the Gaussian linear mixed model (2.4) being a simple model, fitting
via standard mixed model software such as Ime () (Pinheiro et al., 2009) in the R computing
language has not yet been successful. This led Al Kadiri et al. (2010) to consider the
Bayesian inference version and implementation via MCMC. In this section, we discuss and
define a deterministic approximation alternative to MCMC known as mean field variational
Bayes. MFVB scales well to large applications with simple implementation and requires

less computation time than MCMC. However, MFVB cannot generate exact results and

seems to be limited in its approximation accuracy. Nevertheless, in certain circumstances
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MFVB may be very accurate.
We consider working with a hierarchical Bayesian version of (2.12), where B(p x 1),
o? = (0%,...,0%) and X(n x n) are treated as random. Common prior distributions for

these parameters are:
B~ N(0,F), oy ~Half-Cauchy (4y), X ~ Inverse-Wishart (Ax, Byx). (2.13)

An important concern to fitting and inference is the choice of the hyperparameters F, Ay,
As and Bys. When prior beliefs about the model parameters are held, quantities may be
used to represent these beliefs about the hyperparameters. However in most instances,
prior beliefs are unavailable. In cases such as these one may use vague priors. We assume
that the data have been standardised before we impose the following priors for both the

fixed effects and variance hyperparameters:
F=TIx10"" A,=1x10°, As =n, and By =0.01L,. (2.14)

Approximate inference via MCMC is aided by the distribution theoretical result given in

Result 1.4.6. We achieve the following equivalent form of (2.12) and (2.13):

ylB,u, X~ N(XB+Zu, I,,®%), ulo>~N (0, blockdiag (J?IKZ)) :

1<0<d
1 1 ) (2.15)

B~N(0,F), o4%ag ~Inverse-Gamma (%, i) , ap ~ Inverse-Gamma (—, 4
ap 2 A[

3 ~ Inverse-Wishart (As, Bs:) ,

where Ay, and Ay are positive constants, F and By are both positive definite matrices.
Figure 2.2(a) illustrates the DAG corresponding to (2.15) and is effective in determining
its full conditional distributions. The posterior distributions of 3, u, oy, X, and ay, are

not available in closed form. However the distributions of the full conditionals are shown

to be:
-1
8 el | 0
~ N "(I1,®%) "I,®%
u | P& C (IneX) C+| blockdiag(%IKe) C (In®X)y,
1<0<d £
-1
F! 0
.
C'(IneX)C+| blockdiag(C%IKe) ;
1<l<d £
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Yy
(a) (b)

Figure 2.2: (a) Directed acyclic graph representation of the Bayesian penalized spline model
(2.15), where a = (a1,...,aq), and 6 = (012,...,04%). (b) Moral graph representation of
the DAG in (a).

oZ|rest ~ Inverse—Gamma(% (Ke+1) ,% || e || +al71),
aglrest  ~ Inverse—Gamma(l, (022 + A_Q)) and
m
Yrest ~ Inverse-Wishart (Az +m, Z (y, - XiB-Zu)(y;,- X:B-Z;u)" + Bz) )
i-1
An elementary form of MCMC sampling, called Gibbs sampling, can be used to draw
successive samples from these full conditional distributions. However, we demonstrate
fitting via MFVB as it provides for faster fitting and inference to MCMC.
We next consider implementation of MFVB methodology, which involves restricting

the full posterior density function to have the approximate product form

p(B,u,a,0”, 3ly) ~ q(B,u,a)q(c* ). (2.16)

Additional factorizations, referred to as induced factorizations, arise from an interaction
between the factorization assumed in the variational posterior distribution and the condi-
tional independence properties of the true joint distribution (Bishop, 2006). Such induced
factorizations can easily be detected using moralisation (described in Sections 1.8.2 and
1.8.3). We show this using the moral graph of Figure 2.2(b). Let A = 0%, B = ¥, and
C ={B,u,y}, then the smallest ancestral set containing Au Bu C is the entire DAG. It

is evident from the moral graph in Figure 2.2(b) that all paths between o2 and ¥ must
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pass through at least one of {3,u,y}. Thus, applying Theorem 1.8.1 we see that

o’ L 3[{B,u,y}.

Similarly, we can say that {3,u} 1 a| {y, o2, 2}, and hence (2.16) is updated to

Q(Bv u,a, 0-2a 2) = Q(:Ba u)q(a)q(a'Q)q(E).

Then, as shown through the derivations in Appendix 2.A,

q* (B,u)is a Multivariate Normal density function,
q" (ag) and ¢* (ay) are each Inverse Gamma density functions,

q* (X)is an Inverse-Wishart density function.

Note that p4(g4,) and ¥;(g,) denote the mean vector and covariance matrix for ¢* (B,u),

and A 2) and B 2) denote the shape and rate parameters for g* (O‘?). Similar defini-

q(o q(o

tions apply for the other density functions. The optimal values of these parameters are

determined using Algorithm 1. The lower bound on the marginal log-likelihood is (the

Set up initial values:

Ihg(1/02) > 0, fg(1/a) >0, 1< < d, M, 51y positive definite.

Cycle through:
] Fl 0 -
) < C (Im ® Mq(zfl)) C+ 0  blockdiag (lu’q(l/o'Q)IKé)
1<<d £

HaBw) < Zg(Bu)C' (Im ® My(m-1))y
For ¢=1,...,d:

Byay) < Ho(1jo2) T A7 1 Hg(1/ar) < Y By(ar)

By(o2) < 5 (I gy 112 +62(Bgw))) + tg(1/ar)

1

Ha(1)o2) < 3 (Ke+ 1)/ By2)

Byz) < B+ (Y- Chypu) ¥ - Ciypu) "+ CZgg.u)C"

Mq(z—l) <~ (a + m)B;(lz)

until the increase in p(y;q) is negligible.

Algorithm 1: Mean field variational Bayes algorithm for determination of the optimal
parameters in ¢*(B,u), ¢*(?), ¢*(a), and ¢* ().
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Figure 2.3: Fitted curve estimates and pointwise 95% credible sets for both MCMC' and
MFVB approaches for fitting the Bayesian penalized spline model (2.15) to simulated data.
Right panel: zoomed view with data points removed.

derivation of which can be found in Appendix 2.B):

log p(y3q) = 5(TiyKe+p)=—5m log(2m)-log(m)+X{log I' (5 (Ke+1))
—% log |F|-1log (A) - %tr {Ffl (,Uq(g)lt;(g) + Zq(ﬁ))}
+5 log[y(gu)| — 5 Xy (K +1) log (B (07)) (2.17)
—% (Ax +m) log |Bq(2)| - Z;lzl log (:“q(l/ag) + A‘Q) '
+¥ Pa(1/o?)Pa(ifar) + 5 Az (10g|Bel) —log (Cr,4)
+log (Cp a+m) -
Figure 2.3 illustrates the fitted curves using both MCMC and MFVB for the Bayesian
penalized spline model (2.15). The data were simulated from a version of the marginal
longitudinal nonparametric regression model (2.1) with m = 100, n =5 and f and X as
described in (2.2). The z;; are equally spaced but with the starting positions x;; generated
uniformly from the interval (8,8 + 271—0) and € ~ N (0,1). We used diffuse priors given by
(2.14). For the MCMC approach, samples of size 10,000 were generated where the first
5,000 values were discarded. For the MFVB approach the iterations were terminated
when the relative change in log p (y;q) fell below 1077, For this example the MCMC and
MFVB fits and pointwise 95% credible sets are almost identical. This suggests that MEVB
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achieves high accuracy for Gaussian response Bayesian penalized spline regression.

2.3.1 Heuristic justification of mean field variational Bayes

Here we are interested in justifying the initial MFVB approximate product restriction
given in (2.16) for the model in (2.15). We consider the marginal longitudinal frequentist

regression model
y~N(XB,1,,9%). (2.18)

The likelihood-based estimates and confidence intervals attained from (2.18) will be similar
to the Bayes estimates and credible sets based on the marginal longitudinal Bayesian

regression model
Y8, 2 ~N(XB, I, %),

given that the priors on 3 and X are noninformative. In addition, asymptotic independence
(or parameter orthogonality) of 3 and 3 in (2.18) is implied by the block-diagonal form
of the Fisher information matrix:

X(I,oX )X 0

1(6,%) - : wes |
2

(2.19)

The derivation of (2.19) is given in Appendix 2.C. In the Bayesian world, such asymptotic

independence corresponds to the approximate product form

(B8, Zly) ~ p(Bly)p(Zly),

where the MFVB approximate product restriction ¢(3,3) = q(3)q(X) corresponds to the
replacement of approximate with exact equality in this expression. Approaches such as
best prediction (Robinson, 1991) need to be considered for frequentist inference of (2.15)
for the estimation of the random effects vector u. Even so, orthogonality between the
mean and variance parameters of the model is still maintained. Hence, we would expect
the MFVB approximate product restriction in (2.16) to be reasonable and not incur heavy

losses in accuracy.
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2.3.2 Mean field variational Bayes approximate density functions for

entries of X

In Section 2.4, we present the results from a comprehensive simulation study that compares
the MFVB methodology against MCMC. We do this comparison on the mean function hex-
iles, f(Hy), ..., f(Hs) and the entries of the variance covariance matrix, 311, 319, .. ., 245.
The mean function hexiles are straightforward to attain, however, the entries of the vari-
ance covariance matrix require additional effort. The derivations of the distributions of

these entries are given in this section.

2.3.2.1 Diagonal entries

The distributions of the diagonal entries of ¢*(3) are obtained using Theorem 2.3.1.

Theorem 2.3.1. If X is an nxn positive definite matriz that has an Inverse- Wishart
distribution with degrees of freedom a and scale matric B then the diagonal entries

X are such that:

-n+1
X Imerse'Gamm“(%= %Bjj), 1<j<n.

Details of the proof of Theorem 2.3.1 are given in Appendix 2.D. From Algorithm 1 we
see that the optimal ¢-density of 3 has the form

¢"(X) has an Inverse-Wishart (Aq(z), Bq(z)) density function,

where

Ayx) a+m, and
]
Bysy = B+(y-Crypu) (¥-Chypu) +CZipuC

Now, using Theorem 2.3.1, the diagonal entries take the form
¢ (X3j5) ~ Inverse—Gamma(%(a +m-n+1),
1 T
5B+ (- Chigp) (v~ Chtypay) Czq(ﬁ,u)CT}jj )

where jel,...,n.
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2.3.2.2 Off-diagonal entries

We considered two main approaches to finding the distributions of the off-diagonal entries
of ¢*(X). These included: (Approach 1) Numerical characteristic function inversion based
on the Fast Fourier Transform; or (Approach 2) Monte Carlo sampling of the off-diagonal
elements in ¢*(X). It is most desirable to attain these densities exactly, however when
exploring Approach 1 we found that there was no straightforward way of obtaining the
characteristic function of an Inverse-Wishart random matrix. As a result, we used Ap-
proach 2, subject to Monte Carlo error, to finding the distributions of these off-diagonal
elements.

Whilst initially exploring Approach 1 however, we came across some exciting results
involving the characteristic function of the off-diagonal elements of a Wishart random

matrix. This is presented in Theorem 2.3.2.

Theorem 2.3.2. The characteristic function of the off-diagonal entries of a

Wishart(a, B) random matriz X take the form:
E (eithj’) = exp{—g > log ()\g)}
£=1

where the A\g are the eigenvalues of the matriz I —2iTB™ and T is a matriz with the

(4,7") and (j',7) entries equal to t/2 and all other entries equal to 0.

The proof of Theorem 2.3.2 is given in Appendix 2.E. This Theorem enables one to find
the distributions of the off-diagonal entries of a Wishart random matrix analytically by

making use of the Fast Fourier Transform inversion of the characteristic function.

2.4 Simulation study

A simulation study was carried out for Algorithm 1 in order to asses the accuracy of its
Bayesian inference compared to that of MCMC. 1000 data-sets were generated, which
corresponds to the simulation setting described in Section 5.1 of Al Kadiri et al. (2010).

The nonparametric regression model is of the form

E(yijlu) = f(zi), Cov(y;lu)=3, 1<i<100, 1<5<5, (2.20)
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2.4. SIMULATION STUDY

with

[ 0.122 0.098 0.078 0.063 0.050

0.098 0.122 0.098 0.078 0.063
) and X =] 0.078 0.098 0.122 0.098 0.078 [,
0.063 0.078 0.098 0.122 0.098
| 0.050 0.063 0.078 0.098 0.122

2x — 36

f(xi):1+%<1>(

where @ is the standard normal distribution function and (2.20) is an example of the
special case of the Bayesian hierarchical model (2.15) with d = 1.

There are various approaches by which the accuracy of a variational Bayes approximate
density function ¢*(6) may be assessed with respect to the exact posterior density p(6|y).
Avoiding approximate inference methods would be ideal, however, using MCMC with
sufficiently large samples can easily be used to approximate p(f|y) quite well. A detailed
explanation is provided in Section 1.9.

Many parameters are of interest when conducting an assessment of MFVB against
MCMC. We have chosen to work with the mean function hexiles, f(H1),..., f(Hs) and
the entries of the variance covariance matrix, 311, 319, ..., 245. The mean function hexiles
are straightforward to attain, however, the entries of the variance covariance matrix require
additional effort. The derivations of the distributions of these entries were given in the
previous section. The accuracy assessments that follow are based on MCMC samples
using BUGS iterations of size 5,000. A thinning factor of 5 was applied to post burn-in
samples of size 5,000. This resulted in MCMC samples of size 1,000 for density estimation.
The density estimates were obtained using the binned kernel density estimate bkde ()
function in the R package Kernsmooth (Wand & Ripley, 2009). The MFVB iterations
were terminated when the increase in log p(y; q) fell below 107", Figure 2.4 summarizes
the accuracy results whilst Figure 2.5 plots the variational Bayes and MCMC approximate
posteriors for the first simulated dataset. The mean function at each hexile and each entry
of 3 shows high accuracy, with most accuracy levels above 85%.

Another crucial type of accuracy assessment is the comparison between the advertised
coverage of variational Bayes approximate credible intervals and the true coverage. Table
2.1 shows the percentages of the true parameter coverage for the approximate 95% credible
intervals formed from the variational Bayes posterior densities with 0.025 probability mass

in each tail. The coverage overall is very good and does not fall below 93%.
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=
=

f(Hq) f(Hp) f(H3) f(Ha) f(Hs) Z11 2o Z3z Zgs Zss L1z Zq3 Zqg Zqa Zp3 X Zps Zzg X35 g5

Figure 2.4: Summary of the simulation for the marginal longitudinal nonparametric re-
gression model (2.1), where f(H;) is the mean function at hexile i. For the mean function
at each hexile and each entry of 3, the accuracy values are summarized as a bozxplot.

Y1 XYoo X3z Xy X5 Yo Y3 Y4 Y15 o3
95% 95% 96% 94% 95% 95% 94% 94% 95% 95%

Sos o5 Bau X35 Xy f(Hy) f(Ha) f(Hz) f(Hs) f(Hs)
9%5% 95% 94% 95% 94% 95% 95% 95% 93% 94%

Table 2.1: Percentage coverage of true parameter values by approximate 95% credible inter-
vals based on variational Bayes approzimate posterior density functions. The percentages
are based on 1000 replications.

2.4.1 Assessment of speed

To assess the gain in time savings by using MF'VB, we monitored the time taken to fit each
model based on a different replication in the simulation study. The computations for this
study were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes
random access memory). The computation times for each approach are summarised in

Table 2.2.

MCMC MFVB

282.555 (4.506) 3.064 (0.278)

Table 2.2: Average (standard deviation) times in seconds for the simulation study com-
paring MCMC and MFVB fitting of the model in (2.20).

The average computing time for MFVB is about 3 seconds which is substantially faster

48



2.4. SIMULATION STUDY

accuracy ofq (Z11) accuracy of q'(zzz) accuracy of qk(233) accuracy of q*(244)
[Te]

i o o o o N o
] 97% . | 96% . 96% . 98%
w | accuracy o accuracy & - accuracy N T accuracy
- o
o . ‘
® (=] = - 1/

[l ] _
© / \, © © / \
o o - o o —=£
1 T T T T 1 T — T T 1 T 1
0.08 0.12 0.16 0.20 0.08 0.12 0.16 0.20 0.08 0.12 0.16 0.08 0.12 0.16
accuracy of q'(255) accuracy of q'(212) accuracy ofq (Z13) accuracy of q*(214)
o - -

n o, . o, O, (o)
« 96% 94% | 94% | 96%
© accuracy & accuracy | accuracy i accuracy
o ] | T © 4 w _|
T ! o i |
o ‘ |

/ 7 \_ © © / \
o o = o = o —
1T T T 1 T 1 T T T T 1 1 T 1 T T T 1
0.10 0.14 0.18 0.22 0.06 0.10 0.14 0.04 0.08 0.12 0.00 0.04 0.08 0.1¢
accuracy of q*(215) accuracy of qk(Zza) accuracy ofq (Zo4) accuracy of q“(225)
_ o _ o 7] o 4 o
97% A 98% 4 97% 96%
& 1 accuracy & accuracy | accuracy & accuracy
7 1/ 0 1
S e4 /| - °e4 |/
. VRNV AN
o N o _ N o o
1 1T T T T 1 1T T T T 1 1T 1 1 T 1

0.00 0.04 0.08 0.12 0.06 0.10 0.14 0.04 0.08 0.12 0.04 008 0.12

accuracy of q (S34) accuracy of q (S35) accuracy of q (S45) accuracy of f(Hy)

-] [Te)

Q9 4
24 98% A . 97% | 97% < 4 86%
| / accuracy & - \ accuracy accuracy o accuracy
o _|
0 _| / | - - © -
m / \ e 2 <+ -
1/ |\ i o 7 \
o S S ° ©
T T 1 1 T 1 T 1 T 1 T 1T 1T T T 1
0.06 0.10 0.14 0.04 0.08 0.12 0.06 0.10 0.14 0.18 0.90 1.00 1.10
accuracy of f(Hp) accuracy of f(Hg) accuracy of f(Hg) accuracy of f(Hs)
= o N A o S o o

_ 86% * ] 90% * ] 93% ¢ 91%
o gocuracy | accuracy | accuracy « - accuracy
© © - © / ©
] ] ] / \ .- /

N [V N N
o o \ o o
T T T T T T T T T T T T T T T T T T T T T
0.95 1.05 1.15 1.15 1.25 1.35 1.30 1.40 1.50 1.40 1.50 1.60

Figure 2.5: Variational Bayes and MCMC approximate posterior densities for the first
simulated data set.

than the 4.7 minutes taken by MCMC i.e., 94 times faster. It is evident that the speed
gains achieved by MFVB needs to be traded off against the accuracy losses which are

incurred by restriction (2.16).
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2.5. APPLICATION

Making time comparisons completely fair between MFVB and MCMC is difficult, since
convergence for each approximation method is different. The number of iterations used
for MFVB and the number of samples used for MCMC was sufficient for convergence in
this particular simulation study setting. However, these values will change depending on

the type of application.

2.5 Application

The Bayesian additive/interaction model (2.10) was fitted to data from a nutritional epi-
demiology study (source: Kipnis et al., 2003), which was presented in Section 5.2 of
Al Kadiri et al. (2010). Convergence for both MCMC and MFVB was assessed in the
same way as given in the previous section. Keeping with the notation of (2.10), the

variables are:

y = logarithm of intake of protein as measured by the biomarker urinary nitrogen,
r1 = body mass index,

xo = logarithm of intake of protein as measured by a 24-hour recall instrument,

r3 = gender.

Figure 2.6 shows the MCMC and MFVB estimates of fiale, ffemale and fo and the corre-
sponding 95% pointwise credible sets. The MCMC fit took about 1 hour and 5 minutes,

6.2
!
6.2
6.2
!

6.0
L
6.0
6.0
L

5.8
L
58

58
L

5.6
L
56
5.6
L

mean protein biomarker
mean protein biomarker
mean protein biomarker

54

AUl ——
4.0 45 5.0 55 6.0 6.5 75
protein recall

S

S

7
i I 1
T T

15 20 25 | 30 35 40 15 20 25 30 35 40
body mass index (males) body mass index (females)

Figure 2.6: Estimated functions for the additive/interaction model for the nutritional epi-
demiology data using MCMC and MFVB. The dashed curves correspond to 95% pointwise
credible sets.

whilst the MFVB fit took 20 seconds.
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2.6. DISCUSSION

2.6 Discussion

The aim of this chapter was to develop a fast deterministic approach to MCMC to shorten
estimation time. We also sought to address the marginal longitudinal regression problem
and some of its semiparametric extensions. As a result we have derived a MFVB algorithm
for fast approximate inference in semiparametric regression. The central finding here is
that, for using the marginal longitudinal semiparametric regression model, MFVB achieves
excellent accuracy when compared to MCMC for the main parameters of interest. In
addition, the algorithm is one of the first variational algorithms to involve estimation of
an unstructured covariance matrix. The real data example presented in Al Kadiri et al.
(2010) takes almost an hour for MCMC to run on a contemporary laptop using BUGS.
The MFVB algorithm developed in this chapter, fits the same data in seconds with very
similar results. The simulation study shows evidence of significant speed and accuracy

attributes of MFVB against the MCMC benchmark.
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2.A. DERIVATION OF ALGORITHM 1

2.A Derivation of algorithm 1

Algorithm 1 depends on the following derivations of the optimal density functions. Con-
stants with respect to the function argument are denoted by ‘const’. The MFVB calcula-

tions rely primarily on the following expressions for the full conditional distributions:

T -1
F 0
_ 1 /3 T -1
log p (B, ulrest) = —3 (l u ] (C Im®X) C+| blockdiag (071 x,) )
| 1<l<d
17
['B ]—QIB CT(Im®2)1y)+const,
u u
log p(of|rest) = (3 (K¢+1)-1)log (07) - (%Huzﬂz +ay') [o} + const,
log p(aglrest) = —2log(ay) - (a? + A_2) [ag + const,
A 1
log p(X[rest) = —%bgm
—%tr {[Z (y, - X:B8-Zu)(y,- X;B-Z;u)" + Bg] 2_1} + const.
i=1

Expressions for p,,) and g

We begin with

log ¢* (B,u) = E;{logp(B,ulrest)} + const
IB T
S ([ u ] (€7 (Tn e Myz))©
F! 0 3

+ .
0 blockdiag (p,1/02)Tc) |||
B o

-2 C (Im ®Mq(2_1))y + const.
u

Therefore,

q" (B,u) is the N (;J,q(@u), Eq(,@u)) density function,
where

F! 0

-1
_ T
o8 = (C (Tm® Mysy)C+| blockdiag ( 1(/2) Lk, ) )
1<l<d £
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2.A. DERIVATION OF ALGORITHM 1

and

Hy(Bu) = Eq(l&u)CT (Im ® Mq(E‘l)) Y.

Expressions for Bq(glg) and Hg(1/02)

Next, we have

log ¢* (03) E, {log D (a?|rest)} + const

(—% (K¢+1)- 1) log (05) - (%EqHu@”2 + ,uq(l/ae)) /02 + const.

Therefore,
q” (a?) is the Inverse-Gamma (% (Kp+1) 7Bq(al?)) density function,

where
2
By(o2) = 3 (Itgqun I + tr (Bqun))) + Ha(1/ar)-

In addition, using Result 1.4.3, this gives

Ha(ujo) = 2 (Ko + 1) /By,

Expressions for By,,) and i (1/a,)

Similarly,
log ¢" (ar) = Eg4{log p(as|rest)} + const
= -2log (ay) - E, (O’? + A72) Jag + const
= (-1-1)log(ap) - (,uq(l/ag) + A_Q) Jag + const.
Therefore
q* (ag) is the Inverse-Gamma (1, Bq(ae)) density function,
where

—2
Byap) = Fq(1/02) + AT

Also, making use of Result 1.4.3, we get

Hg(1/ag) = 1/ Bq(ag)-
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2.A. DERIVATION OF ALGORITHM 1

Expressions for Byx) and M5

Finally,

log ¢ (%)

Therefore,
¢ (%)

where

E, {log p(Xlrest)} + const

—% (As +m+n+1)log|X|
—Ltr [;Eq(m) {(y;-X:B-Z)(y;,- X:B-Z;u)" + Bs} 2—1]

+const

-1 (As+m+n+1)log|3|

([ 50~ Cotans) (5~ Cota) + € €7

+Bx]X7") + const.

is the Inverse-Wishart (Ag +m, Bq(z)) density function,

Bys)=Bs + Z; [(yz = Cittypuy) (Ui~ Citto(pa) + CiEq(B,u)CiT] :

Lastly, making use of Result 1.4.7 gives

Mq(z—l) = (AE + m) B(;(lz).
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2.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

2.B Derivation for the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given at (2.17) is

d d
log p(y;q) = %(;Ke +p) - Blog (2m) —log () +;10g I'(5 (K, +1))

~§log (o3) ~log (A) - 20 7 {l1gay” + tr(Sqe))} + 5 108 (8.0

d
I3 (Kg+1) log( o(o? ) -5 (As +m) log|Bys| + Z Hq(1/02)Ha(1/ar)
=1

Zlog (ﬂq(l/g 2) + A ) + 5 As; (log |Be|) ~10g (Cy ) +10g (Cri ) -

Derivation: The lower bound on the marginal log-likelihood is achieved through the fol-

lowing expression:
log p(y3q0) = E¢{logp(y,B,u,0% a,%)-log ¢*(B,u,0°a )}
= Eg{log p(y|B,u,X)} + E,{log p(B,u|c?) -log ¢* (B,w)}
+E,{log p (aQ\a) —log ¢* (0'2)} + Ey{log p(a) -log ¢" (a)}

+Eq{log p (%) -log ¢* ()}
First we note that

log p(ylB,u,X) = -% log(2m) - F log|X|
L t{(Ime%) " (y-XB-Zu) (y-XB-Zu)'}.

Therefore,
Ey{log p(y|B,u, %)} = -7 log(27) -3 Eq (log|X))
—% tr{(Im ® Mq(E’l)) [C’Eq(ﬂu)CT
+(y - C“q(ﬁiu)) (y- C”q(ﬁ,U)>T]} :
Next,

E, {logp ﬁ,u|o-2 _log q* (,8,’[1,)}
q E» 2) & 2 & 2 2\, 1
=—5log (0,8) - 5;[(5 B, {log (UZ)} - §;Eq (1/U€)Eq (HW” ) +3 1og|Xy.u)

+%(§:K4 +p)

(=1
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2.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

= —aplog(o )“ZK@ 1 (108 (07)) = 57 {I1g(e)I* + tr (Za(s))}
1 d d
2 2 Ha(1/07) ) Uttgqun I” + 11 (Bqeun) } + 5 108 [Zgp.) + 3 (ZK@+p),

Next,

log p(0'2 | a) —log ¢* (0'2)

1
d B o2 i(Kﬂ—l) 1 B -B o2
~log HFQ( 7) )(0_?) 5 (K+1) 1eXp( Uqg z))
¢

2
o‘ /O-K

o~
Il
—_
~
I
—_

i

d d
(5 (1) = 1)log (o) + Y log T (4 (e + 1) - le)log( (o)

Ti d d
- _%ézl log (ar) +;10g (L (K, +1)) - tlog () + Z( oy~ ) (1/07)
= =1
d d
+3Y K log (07) = 33 (Ko +1)1og (By(,2)) -
=1 (=1

This means that

E, {log D (0'2 |a) -log ¢~ (0'2)}

d
_%éEq {10g(ae)}+€_zllog I {3 (K, +1)}
d

1
—5 log (m) + ZZI (Bq(ag) - 'U’q(l/ae)) Hq(1/0%)

d d
+1 Z ¢ Eg{log (03)} - ; (K¢ +1) log(Bq(Ug)).
In addition,
log p(a)-log ¢* (a)
d
= —log (A) - L log () + 22 log (a¢) - Zlog( q(az)) + Z (Bq(ae) - A_Q) (1/ay)

d
= —log (A) - L log () + %Z og (ag) - Zlog( (1/02) + A ) Z,uq (1/02)/ a2
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2.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

and so
1 1 d
Eq{log p(a)-log ¢" (a)} = -log(A)-3log(m)+5) E,(log(ar))
=1
d
_Zlog (Mq(l/o ) Z 1/0’l MQ(l/az)
Next,
log p(X)-log ¢" (X)) = -log(Cpa)+1log(Cp arm)+ & log | X + %Alog|B|
~2(A+m)log|Bys)| - 2tr (BZ™!) + tr (Bysy=7").
Hence,
E,{log p(X)-log ¢" (X))} = -log(Cpa)+1log(Cpn a+m)+ BE, (log|X]) + %Alog|B|

—%(A + m) IOg |Bq(2)| + %tr ((Bq(g) - B) Mq(E’l)) .

Next, note that

d d
> (Byoz) = Hatsan) Haigory = 22 13 {lbtgqun P+ 05 (Baun )} + a1/

£=1 (=1
~Pa(1jar) | Fg(1/02)
d
= 3 2 Me) ) (g I+ tr (Zqqun))) -

We also note that
Lor{(Bym) - B) Mysy }

([ 50 Cotann) (0~ Cot) + o €1 | M, 50 |

1 T
= L or[(In ® M) {(y - Chgs) (¥~ Chigay) + CZ(p) CT}
The cancellations lead by these equalities leads to the lower bound expression given in

(2.17).
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2.C. DERIVATION OF THE FISHER INFORMATION MATRIX FOR THE LINEAR
MARGINAL LONGITUDINAL MODEL

2.C Derivation of the Fisher information matrix for the lin-

ear marginal longitudinal model

We derive the Fisher information matrix for the frequentist Gaussian marginal longitudinal

regression model:

y~N(XB,InoX).
The log-likelihood of (8,X) is
0B, %) = - log(2m) - T log [Z| - 3(y - XB) (I @ T71) (y - X B).

To begin, with the help of Result 1.4.1 (g), we take the first differential of ¢(3,3) with

respect to 3:

dpl(B,2) = 5(-XdB) (In®S ) (y-XP)-5(y-XB) (In®%")XdB
= (y-XB)' (Ine=")Xdg
and then the second differential of ¢(3,X) with respect to 3 is

dgl(8, %) (-XdB)" (I, ®x7')Xdp

~(dB)’ X (In®=7")X (dB),

so, from Theorem 1.4.2, we see that
Het(3,2) = -X"(I,® 2 HX,
and so, the 3 block of I(3,X) is
~E{Hg((3,2)} = X"(I,® T ") X.

In order to check that the maximum likelihood estimates of 3 and X are indeed uncorre-

lated, we next deal with

dyeesy {dg (B, %)} = (y - XB) d{(In® =)} dB.

However, we see that

E [dyec(s) {ds €(B8.2)}] = 0.
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2.C. DERIVATION OF THE FISHER INFORMATION MATRIX FOR THE LINEAR
MARGINAL LONGITUDINAL MODEL

It then follows that I(8,3) is of block-diagonal form. We next move on to find the X

block of the information matrix.
dyec(syl(B,2) = ~5d (log|Z]) - 3(y - XB) d(Im ® =7')(y - X B)
Then, using Results 1.4.1 (¢), (e) and (f), we get
dyecz)l(B,8) = -Ztr(T7dX)+35(y-XB) {Ine (X dEZx )} (y-XB)

and so

Boe(sy U8, Z)

D {8 (dX) 27 (d®)}
—5(y-XB) {Ine (=" (@2)=(@d2)2)} (y- XB)
—5y-XB8) {Ine (S (d2)T([d2) S} (y- XB)
= Zu {7 (dZ) 2 (%)}
~(y-XB) {Ine(='(@2)='(@2)=")} (y- XB).

With the help of Results 1.4.18, 1.4.14 and 1.4.15, we see that

E{d%ec(x)ﬁ(ﬁ, 2)}

24 {2 (dX) T (dXD)}

+tr[I, @ {EX(dZ)2! (d2)2 '} ]
2 {Z (@dX) 27 (dXD)}

+mtr {TX ! (dE)T ! (dZD)=}
2 (S (d2) = (dD)}.

Then, using Result 1.4.16, we get
B @ ooy (B, )} = Bvec(dB) (Z7 @ B )vec(d D).
Therefore,
Hyee(y (8. 8) = -3 (7 0 B7),

and the full information matrix is:

XTI, )X 0

1(8,%) = . pEton) |
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2.D. PROOF OF THEOREM 2.3.1

2.D Proof of Theorem 2.3.1
Theorem 3.4.7 (a) of Mardia et al. (1979) states that if
X ~ Wishart (a, B), a>n, B positive definite, (2.21)

then the ratio ¢"Be/c" X e has a yq_n+12 distribution for any fixed n x 1 vector e. If we

let ¢=[0 1 0]", such that Bgy = ¢" Be and (X‘l)Q2 =c" X 'c. Then,
B N
Tooin -~ Xa-3+1
(X7
and making use of Result 1.4.5, this is equivalent to
322 (a -3+1 1
1 ~ Gamma| ——/——, —) .
(X7), 22
Using Result 1.4.4 we see that:
x! —3+1 1
( )22 ~ Inverse-Gamma, (ﬂ, —)
B 2 2

Therefore using Results 1.4.2 and 1.4.8, the [2,2] entry of an Inverse-Wishart random
matrix X ! has distribution

(X_l) (a—3+1

99 ™ Inverse-Gamma , %ng) .

The distribution of the [1,1] and [3,3] entries of X! have similar forms. We have shown
this for a 3 x 3 random matrix, however this applies for general n x n random matrices

also. Thus, for a general n x n positive definite matrix X that is distributed
X ~ Inverse-Wishart(a, B),

its diagonal entries have the following distribution:

a-n+1

5 ;%Bjj)a 1<j5<n.

X~ Inverse—Gamma(
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2.E. PROOF OF THEOREM 2.3.2

2.E Proof of Theorem 2.3.2

The characteristic function of a Wishart random matrix X with distribution
X ~ Inverse-Wishart (a, B)
is
E[exp {itr (XT)}] =T - 2¢T B~/

If we let X be of dimension 3 x 3 and focus on finding the characteristic function of the

[1,2] and [2,1] off-diagonal entries of X, we set

I
S =+ O
S O =+
o O O

so that tr (XT') = 2t X 15. Therefore the characteristic function becomes

I - 2iT B~/
exp {-4log|I - 2iTB |},

FE {GXp (2itX12)}

and since the determinant of a matrix is equal to the product of the eigenvalues of that
matrix, we get
4 a
E {exp (2itX12)} = exp {—5 > log (/\e)} :
=1

where the Ay, 1 < £ < n, are the eigenvalues of the matrix [I — 2T B™"|. This can also be

shown for Wishart random matrices of dimension n x n.
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Chapter 3

Variational inference for
heteroscedastic semiparametric

regression

3.1 Introduction

In many situations considering real data, the assumption of constant conditional vari-
ance on the regressors is erroneous, albeit used routinely in parametric and nonparametric
regression. Ignorance of significant heteroscedasticity will lead to misguided inferential
statistics such as prediction intervals. A remedy for this is to employ heteroscedas-
tic nonparametric regression which overcomes these complications. For a set of data,
(x5,9:), 1 <1i < n, we replace the homoscedastic nonparametric regression model

E(y;) = f(zi), Var(y;) =o?
with

E(yi) = f(xi), Var(y:) = g(z:), (3.1)

where the variance function g is estimated simultaneously with the mean function f. Sev-
eral approaches already exist for fitting (3.1), some of which are encompassed in Ruppert
et al. (2003) and Rigby & Stasinopoulos (2005). However, graphical model representa-

tions of mixed model-based penalized splines (Wand, 2009) have shown to be an effective

The content of this chapter is published as: Menictas, M and Wand. M.P. (2015). Variational
inference for heteroscedastic semiparametric regression. Australian and New Zealand Journal of Statistics,
57, Number 1, 119-138. This research was also presented at the Australian Statistical Conference in
conjunction with the Institute of Mathematical Statistics Annual Meeting, Sydney, 2014.

62



3.2. MODEL DESCRIPTION

approach, especially when considering the extendability of models arising from (3.1).

In this chapter we investigate a relatively new modification of MFVB known as non-
conjugate variational message passing (Knowles & Minka, 2011), which aids in the adap-
tation of heteroscedasticity to the appropriate model whilst also involving only closed form
algebraic expressions. Even though we focus on univariate nonparametric regression, the
modularity of our approach allows straightforward extensions to more complex models.
This is known as the locality property of MFVB and is described in section 1.8.1 and in
greater detail in section 3 of Wand et al. (2011). For example, if a complex graphical model
includes a component where one variable is modelled as a heteroscedastic nonparametric
regression function of another variable, the variational inference for the parameters in that
section of the graph can be developed using the methodology in this chapter.

Lézaro-Gredilla & Titsias (2011) and Nott et al. (2012) have also developed variational
inference for heteroscedastic regression models, although the latter contribution was re-
stricted to linear mean and log-variance functions. Simultaneous nonparametric mean and
variance function estimation aided by an elegant Gaussian process approach was achieved
by Lazaro-Gredilla & Titsias (2011). Their strategy involved full-rank nonparametric func-
tion estimators with Gauss-Hermite quadrature for variance function estimation. Bugbee
et al. (2015) use MFVB with an embedded Laplace approximation to account for semi-
parametric regression with heteroscedasticity. Our approach is different by using low-rank
penalized splines, as well as a non-conjugate MFVB algorithm that involves closed form
updates, making it more susceptible to increasingly larger data sets.

In Section 3.2, we provide details on the Bayesian penalized spline model for simultane-
ous mean and variance function estimation based on univariate data. Section 3.3 provides
a description of the variational inference methodology used to formulate Algorithm 2. In
Sections 3.4 and 3.5 we present numerical analyses and results which confirm the speed

achieved by MFVB.

3.2 Model description

The generic form of the Gaussian heteroscedastic nonparametric regression model is of the

form

yi "N (f(x5), g(x)), 1<i<n, (3.2)
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3.2. MODEL DESCRIPTION

where (z;,y;) represents the ith predictor/response pair of a regression data-set and the
functions f and g are real valued smooth functions. The quantity g is referred to as the
variance function, and /g is the standard deviation function. Fitting of (3.2) using mixed
model-based penalized splines (e.g. Ruppert et al., 2003) requires the following structural

forms of f and g¢:

K., '
flx) = Bo+Pra+ ) upzi(x), w, ™ N(0,02
f=1
K, » (3.3)
and g(z) = exp|yw+mz+ Y vkzp(z)], v~ N(0,02).
f=1

The 2/, 1 <k < K, and z;, 1 <k < K, are spline bases of sizes K, and K, respectively.
Here we use suitably transformed cubic O’Sullivan splines as our default for the z; and
2y, as explained in Section 4 of Wand & Ormerod (2008). Further, we allow for K, and

K, to comprise different sizes. The prior specifications on the model parameters are
Bo, B "™ N(0,03), 70,7 ~ N(0,02), oy ~Half-Cauchy(A,) and o, ~ Half-Cauchy(4,),

where o0g,0,, Ay, A, > 0 are hyperparameters to be specified by the user. Under the
assumption that the data has been transformed to have zero mean and unit variance, the

default setting we employ for the hyperparameters throughout this chapter are:
op=0y=Ay=A, =10 (3.4)

The complete Bayesian hierarchical model corresponding to (3.2) is

ylB. v, u,v ~ N (XB+ Zyu, diag{exp (X~ +Zv)}),
ulog ~ N (0, 03Ik,), wlog~N(0, 0}lk,),
B~N(0, 0312), ~~N(0,02Is), (3.5)
o2la, ~ Inverse-Gamma(3,1/a,), a, ~ Inverse-Gamma(3,1/A42),

o?|a, ~ Inverse-Gamma(, 1/a,),  a, ~ Inverse-Gamma(3,1/A?),
where 3 is the 2 x 1 vector of fixed effects containing (o, 31) and ~ defined similarly.
Further, uw is the K, x 1 vector containing (ui,...,uk,), v is a K, x 1 vector defined
similarly, and o2 and o2 are variance components corresponding to w and v respectively.
The design matrices, X, Z, and Z,, are defined to be

X =1 zi)icicn,  Zu = [’Z’?(xl)]

1<k<K, - 1<isn

and sz[zZ(xi)] '

1<k<K, ~1si<n
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It is beneficial to merge the mean function coefficients and variance function coefficients

VEI:ﬁ] and wz[’y
u v

Combining the corresponding design matrices C), = [X Z,] and C,, = [ X Z,] then allows

into single vectors:

(3.6)

us to use the following notation
XB+Zyu=Cyv and Xv+Z,v=C,w.

The directed acyclic graph corresponding to the model shown in (3.5) is shown in Figure

3.1.

2y

Figure 3.1: Directed acyclic graph for the model conveyed in (3.5). The shaded node
corresponds to the observed data vector. Random effects and auxiliary variables are referred
to as hidden modes. The dashed boxes indicate that B and w are combined into a vector
denoted by v and w is the combination of v and v.

3.3 Variational inference algorithm

Having discussed the elementary design of our model, we next provide the methodology
required to achieve variational bayesian inference for (3.5). Ordinary implementation of
MFVB methodology involves restricting the full posterior density function to have the

approximate product form

p(v, w, a, a’|y) » q(v)g(w) q(os, 07) q(au, av), (3.7)

where @ = (ay, a,) and o2 = (02, ¢2). Additional factorisations can easily be detected us-

ing moralisation. After moralising (see Definition 1.8.9) it becomes clear that all paths be-
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3.3. VARIATIONAL INFERENCE ALGORITHM

tween o2 and o2 must visit at least one of the components in the set {y,v,w}. Using The-
orem 1.8.1, o2 is separated from o2 given {y,v,w}. Similarly, a, L a,|{y,v,w,c2,02}.

YU v

Therefore, (3.7) reduces to

a(v)a(w) q(or,07) q(a, av) = q(v)g(w) q(o2) q(o7) a(au) a(ay). (3.8)

Under this product restriction, the parameters v,02,02,a, and a, all have closed form

expressions for their full conditional distributions

ped 0
p(vfrest) ~ N[{Cldiag(e @), +| P2 Cldiag (e C-+) y,
0 Oy IKu

-1
s 0
C.diag (e =) C, + 78 2 )
0 o, IKu

(Ku+ 1), 5lul®+a;!)
(Ko +1), 5ol +a;)

Inverse-Gamma

2

p(o2rest)

p(orest)

2

1
2
1
2

(
Inverse-Gamma (
(

2

p(ay) Inverse-Gamma (1, o2 + A;Q)

p(ay) ~ Inverse-Gamma (1, o,? + A,?).
However, the optimal posterior density function of w is
0" (@) o exp [ Ey(_u {logp (wlrest)} ] (3.9)

which involves intractable multivariate integrals that are not available in closed form

expressions. A remedy in this instance is to work with the product restriction

p(V7 w, a, 0-2| y) N q(V) q(w7 l'l’q(w)7 Zq(t.u)) Q(a’) Q(Uz)v (310)

where

q(w;u,q(w),Eq(w)) is the N(uq(w),Eq(w)) density function. (3.11)
Thus, the marginal log-likelihood is

log (s ¢ Hy(wy: So(w)) = Eq[logp(v, w, a, 0 y)

~log {q(v) 4(w; ty(w), Bqw)) 2(a) g(a?)}] (12

and choosing p,(,) and ¥,,) to maximise (3.12) corresponds to minimization of the
Kullback-Leibler divergence. Knowles & Minka (2011) termed this approach non-conjugate

variational message passing, since it offers a way of getting around the non-conjugacies of
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3.3. VARIATIONAL INFERENCE ALGORITHM

ordinary MFVB. This approach is explained in more detail in Section 1.7.

For fixed (f4(w), Xq(w)), application of ordinary MFVB, with ¢*(w) omitted, gives

q*(v) is a Normal (pq(u), Zq(,,)) density function,

q*(02) is an Inverse-Gamma (%(Ku +1), Bq(ga)) density function,

q*(0?) is an Inverse-Gamma (%(Kv +1), Bq(ag)) density function, (3.13)
q*(ay) is an Inverse-Gamma (1, Bq(au)) density function
(

and ¢*(ay) is an Inverse-Gamma (1, Bq(au)) density function,

for parameters p,(,) and 3 the mean and covariance matrix of ¢*(v), By(s2), the rate

q(v)s
parameter of ¢*(02), B(+2), the rate parameter of q* (o), Bgy(a,), the rate parameter of

q*(ay) and B the rate parameter of ¢*(a,).

q(av)
With assistance from Knowles & Minka (2011) who propose a fixed-point iteration
scheme for maximizing (3.12) and Wand (2014) who provides simplified fixed point updates
for the Multivariate Normal ¢-density parameters, such as that shown in (3.11), we can
now present Algorithm 2.
Convergence in Algorithm 2 is assessed using the variational lower bound on the ap-

proximate marginal log-likelihood, denoted by log p(y; g, Hg(w) 3 (w)) and has the follow-

ing expression:

log p(Y; ¢ Bg(w)r Dq(w)) = % (Ky + Ky +4) - 5 log(2m) +logI’ (%(Ku +1)) - 2log(m)

+logI' (§(K, + 1)) —log(Au) —log(Ay) = 317 (Cupty(er)

—31" {H(r3) @ xP (Yy(w) ) } ~log(0F) ~ log(07)

+3 108 [Sq()| + 310824 - ﬁ (”“q(ﬁ) 1+ 1 (Zq()))

_ﬁ {lg( 17 + t1(Sg(3))} = 3 (Ku + 1) log(By(oz))

=5 (Ko + 1) 10g(By(o2)) =108 (1g(1/03) + Au?)

—log (Hg(1/02) + A3%) + Ba(1/a2) Ha1fau) * Fa(1/o3) Fa(1/ar):
The optimal parameters shown in Algorithm 2 are all interdependent and are obtained by
cycling through this iterative coordinate ascent procedure. The algorithm also provides
fixed point iterative updates for pg,) and 3,,). Details on the derivation of these
parameters, as well as the parameters in (3.13) are given in Appendix 3.A. In addition,
Hq(u) 18 defined to be the sub-vector of p,(,,) corresponding to u, and X, is the sub-
matrix of 3,y corresponding to w. The parameters p1,(,) and 3, are defined similarly.
It is important to note that unlike ordinary MFVB, there is no guarantee that there will

be an increase at each iteration for p(y;gq, Hg(w)s 3 (w))- Therefore, the cycle should end
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3.3. VARIATIONAL INFERENCE ALGORITHM

Set up initial values:

Hg(w) & (Ky +2) x 1 vector, 3y(,) a (K, +2) x (K, +2) positive definite matrix,
Hq(1/02)s Bg(1/02) > 0, and prgp2y an n x 1 vector.

Cycle through:

1:bq(w) <~ exp {—Cuq(w) + %diagonal (CZq(w)CT)}

S < (CTdiag{zp }C+[ 7 12 0 ])_1
a(v) q(w) 0 o2y I K

Ho(w) < gy C diag {¥g( } ¥

Ba(ry) < diagonal {(y - Cuttyn)) (- Cottyy) + Co By C }

o1 0 -
Y0y < | CTdia 2 O N C+| 7 2 :|)
a(w) ( g{rq(rz) © Py} [ 0wy n
072I2 0
Hrg(w) < Ha(w) * Bg(w) {C " (Hq(rg) © Yoy 1) - [ "o TR o~ ] “q(w)}

Ha(tjaw) < U (Hejo2) + A) 5 Hajaw) < 1/ (1q/o2) + A7)
tg(1/o2) < (Ku+1) [ {20401/a0) + | o) |7 + tr (Bqcu)) }
ta(1foz) < (Ko + 1) [ {20001 /a0) + 1B 7 + 7 (Zg0)) }

until the absolute relative change in log p(y; ¢, y(w), Zq(w)) is negligible.

Algorithm 2: MFVB algorithm for the determination of the optimal parameters in ¢*(w),
¢*(v), ¢*(03), ¢*(03), ¢ (au) and ¢*(av).
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Setting f(x) log g()
A sin(37x?) 0.1 + cos(4rmx)
B ~1.02z + 0.01822 + 5¢) (2;0.38,0.08) 0.5 ® (;0.2,0.1) + 0.322

+3¢ (2;0.75,0.03)
C B¢ (2;0.01,0.08) + 22¢ (2;0.45,0.23) 3¢ (2;0,0.2) + 46 (2;1,0.1)
+1.8{1 - 126 (;0.7,0.14) }

D sin(37x?) - 1.02z + 0.01822 cos (47x) — 0.4 + 0.322
156 (;0.38,0.08) —® (;0.2,10)

Table 3.1: Details of simulation study settings.

once the absolute relative change in its logarithm falls below a negligible amount.
Algorithm 2 has been applied to simulated data and accuracy against MCMC has been

assessed. The results are summarized in Section 3.4.

3.4 Assessment of performance

In order to assess the performance of Algorithm 2, we carried out an extensive simulation
study to address the accuracy and computing time of model (3.2). Data were simulated
according to model (3.2) with n = 500 and the z;s uniform on (0,1). The four mean and
variance function pairs that were used are listed in Table 3.1, where ¢(+; u, o) and ®(+; u, o)
denote the density and distribution functions of the Normal distribution with mean p and
standard deviation o, respectively. 100 data-sets were generated for each of the function
pairs shown in Table 3.1. Each model corresponding to a new replication was fitted using
MFVB corresponding to Algorithm 2 and MCMC based on a burnin of 5000, kept sample
of 5000 and thinning factor of 5. The MFVB iterations were terminated when the relative
change in log p(y; q) fell below 1077,

In the sections that follow, we provide details on the accuracy, coverage and timing of
MFVB against the MCMC benchmark. Let us next discuss each of these assessments in

more detail.

3.4.1 Assessment of accuracy

Fast approximate inference for the model parameters is achieved by Algorithm 2, however

there is no guarantee that an acceptable level of accuracy will occur. Figure 3.2 provides
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an accuracy assessment of Algorithm 2, where the accuracy scores are summarized by
boxplots for each parameter of interest. The accuracy score is defined in Section 1.9.
The parameters of interest for which accuracy is monitored are the f(Hy) and g(Hy),
1 < k <5, where the Hj, are the sample hexiles of the z;s. It is evident from Figure 3.2
that most of the accuracies for the f(Hj) lie around 90%, while accuracies for the g(Hy)
lie around 80%. These favourable accuracy results are in keeping with the heuristics given

in Section 2.3.1 of Chapter 2.
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Figure 3.2: Summary of simulation study where the accuracy values are summarized using
boxplots.

The fitted mean and standard deviation functions for the first replication in each of the
four simulation settings is shown in Figure 3.3, with comparisons of MCMC and MFVB. As
illustrated, the MCMC and MFVB fits show very good agreement for the mean functions
and relatively good agreement for the standard deviation functions.

It is also of interest to see how well the joint distribution of certain parameters are
doing in terms of approximation accuracy. Figure 3.4 shows a visual assessment of the
approximation accuracy for the joint posterior density functions of the mean and variance

hexile pairs according to simulation setting A.
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Figure 3.3: Comparison of MCMC and MFVB fitted functions for the first data-set in
each of the four simulation settings.

In many cases, as shown by Figure 3.2, the accuracies can provide evidence of poor
MFVB performance. Figure 3.5 illustrates some of the poorer approximations for this

simulation study.
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Figure 3.4: Example of approximation accuracy for the joint posterior distributions of the
mean and variance hexiles given for the first dataset in simulation setting A.

3.4.2 Assessment of coverage

Another assessment of the performance of MFVB, involves the comparison between the
true coverage and the coverage gained by the MFVB approximate credible intervals. The
percentages of the true parameter coverage based on the approximate 95% credible inter-
vals attained from the MFVB posterior densities are given in Table 3.2. As can be seen,
the coverage overall is good and does not fall below 86%. Here we provide further confir-

mation that the performance of MFVB is excellent for the mean function and relatively
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Figure 3.5: Ezample of a poor approximation (for the variance function) for a dataset
corresponding to simulation setting C.

good for the variance function.

f(Hy)  f(H2) f(Hs) f(Ha) f(Hs) g(Hi) g(H2) g(Hs) g(Hi) g(Hs)

sett. A 98 98 94 98 97 89 87 83 87 82
sett. B 98 98 95 96 95 83 83 90 89 83
sett. C 99 98 96 99 99 90 91 92 90 76
sett. D 98 98 95 98 98 89 89 83 86 82

Table 3.2: Percentage coverage of the true parameter values by approximate 95% cred-
ible intervals based on wvariational Bayes approximate posterior density functions. The
percentages are based on 100 replications.
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3.4.3 Assessment of speed

In order to demonstrate the time savings to be gained by using MFVB when compared
to MCMC, we monitored the time taken to fit each model for each approach. The study
was performed on a desktop computer (Intel Core 15-2400 3.10 GHz processor, 8 GBytes
of random access memory). The resulting times are summarized in Table 3.3.

As we discussed previously, convergence for both approaches was assessed differently.
Specifically, the MFVB iterations were terminated when the relative change in log 1_9(y; q)
fell below 1077, whilst MCMC was based on a kept sample of 1000. In addition, the speed
achieved by MFVB is traded off against slight accuracy losses which are invoked by the
product restriction given in (3.8).

However, even when allowing for these slight differences, the results clearly demonstrate
that MFVB is at least approximately 200 times faster than MCMC across the models.
Therefore, we conclude that a model which takes minutes to run using MCMC, will only
take seconds to run using our MFVB algorithm.

MCMC MFVB

(1225.49, 1228.45)  (1.69, 1.87)
setting B (1232.96, 1238.53)  (4.95, 5.89)
setting C  (1185.45, 1188.01) (3.29, 4.67)
(1217.77, 1364.56)  (1.26, 1.38)

setting A

setting D

Table 3.3: 99% Wilcoxon confidence intervals based on run times in seconds for MCMC
and MFVB fitting.

3.5 Application

We have seen the time benefits and good accuracy results for MFVB from the results
discussed thus far using simulated data. We next evaluate the performance of MFVB
using real data in order to understand its potential application.

Firstly, we consider two nonparametric regression examples without taking heteroscedas-
ticity into account. Secondly, we use our new MFVB methodology by applying Algorithm
2 to the same regression examples. This enables us to clearly understand the implications
of ignoring heteroscedasticity, as it might on occasion be tempting to immediately fit the
model in a naive fashion. Our process involved fitting a cubic smoothing spline to two

nonparametric regression examples, based on the R function smooth.spline() (R Core
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Team, 2013) with default settings. Figure 3.6 illustrates the fits. For the interested reader,
a complete description of the two data sets that were used can be found in Sections 2.7
and 5.3 of Ruppert et al. (2003).

As can be evidenced from the standardized residual plots in Figure 3.6, there exists
significant heteroscedasticity. Ignoring the heteroscedastic nature of these data sets will

lead to erroneous inferential statements, such as prediction intervals. In order to account
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Figure 3.6: Two example nonparametric regression fits and corresponding standardized
residual plots. Horizontal dashed lines at +2 and +3 aid assessment of standard normality
of the standardized residuals.

for the significant heteroscedasticity as suggested by Figure 3.6, we also fitted (3.5) using
Algorithm 2 to both these data sets. This is shown in Figure 3.7. The top panels illustrate
the fitted mean functions with pointwise 95% credible sets. The middle panels illustrate
the fitted standard deviation functions, corresponding to /g in the notation of (3.2), and
corresponding 95% credible sets. The model was fitted using MFVB corresponding to
Algorithm 2 and MCMC based on BUGS (?) with a burnin of 5000, a kept sample of
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5000 and a thinning factor of 5. The MFVB iterations were terminated when the relative
change in log g(y; q) fell below 1077, This value is determined by graphically checking if
convergence is achieved and can change depending on the type of application. We also
conducted a comprehensive check to confirm that the relative change in the approximate
marginal log-likelihood does not lead to early stopping. Data was generated from different
scenarios, over several hundred runs and Bayes estimates of f and g were recorded at the
stopping point and again with iterations continuing 25% beyond the stopping point. The
differences in the estimates were negligible.

The agreement between the MFVB and the MCMC fits for the mean function is
excellent. For the standard deviation function fit, the agreement between MFVB and
MCMC is good, rather than excellent. Finally, the |/g-standardized residual plots in the
bottom panels of Figure 3.7, indicate proper accounting for the heteroscedasticity and

agreement with normality.

3.6 Discussion

At the outset of this chapter, we sought to develop a variational Bayesian algorithm for
semiparametric regression models that have a heteroscedastic component. We sought to
do this because ignoring heteroscedasticity, especially amongst complex statistical mod-
els, could lead to problematic inferential results and prediction intervals. As a result of
the work carried out in this chapter, we have successfully developed a variational Bayes
methodology which incorporates a new modification of MFVB, known as non-conjugate
variational message passing, involving a closed form algorithm for univariate heteroscedas-
tic semiparametric regression. The methodology also applies to larger more complex mod-
els, as provided for by the locality property of mean field variational inference methods.
Comparisons between variational inference and the MCMC benchmark for both simu-
lated and actual data, shows that this new methodology performs very well. In addition,
we have been able to achieve significant time savings by using our new methodology when
compared to MCMC. For instance, as was shown in Section 3.4.3, we witness at least a 200
fold increase in estimation speed. This is equivalent to saying that a model which takes
minutes to run using MCMC, will only take seconds to run using our MFVB methodology.
Having considered the impact of heteroscedasticity and remedies via our new MFVB-

type methodology, we next turn our attention to extensions of this work which we discuss
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Figure 3.7: Top panels: fitted mean functions for two example data sets from Wand &
Jones (1995) and Ruppert et al. (2003). The solid curves are approrimate pointwise
posterior means whilst the dashed curves are corresponding pointwise 95% credible sets.
The approzimate fits are based on MFVB via Algorithm 2 and MCMC via BUGS. Middle
panels: similar to top panels but for the standard deviation function. Bottom panels:
standardized residual plots based on {y — f(x:)}/\/{G(x:)} where J and § are the MFVB-
approzimate Bayes estimates of f and g.

in Chapter 4.
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3.A. DERIVATION OF ALGORITHM 2

3.A Derivation of algorithm 2

Expressions for p ) and ¥,

First note that

p(vlrest) o p(ylv,w)p(B)
= exp {—%(y - Cyv)'diag (e‘Cw“") (y - CVI/)} X exp {_?1% ||u||2}

xexp{—%”ﬁ\?} + const,

where ‘const’ denotes terms not depending on the argument of v. Taking the logarithm

of both sides gives

logp(vlrest) o« —3(y - Cow)'diag (%) (y = Cov) = gz ful - 77 B
0 0'1:2bIKu
o< —% {VTCTdiag (e‘CW“’) C,v -2C]v'diag (e‘C“"") y

-2
7| 78 I 0 v
0 U;2bIKu

1 0
~1|vT{C)diag (e C¥)C, + 7B 72 L v
0 0, °blgk,

—2v7{C/diag (e7C“*) y}] + const.

1 0
o< —% y-C,v)'diag (e‘Cw“’) (y-C,v)- %I/T [ 7p 72 v

Now taking expectations with respect to all parameters except v:

* 1 T T35 052I2 0
logg™(v) = —3 v Oldiag (vy)) Cut | paen T, |J
q(1/oz u

-2v7 {C diag (b)) }] + const,
where

/ltbq(w) = Eq {exp (_wa)}
exp {—Cwuq(w) + %diagonal (Cqu(w)CL)} :

Completing the square gives

logq*(v) = —% {V—Cldiag(tﬁq(w))yQ}Tﬂ{y—Cldiag(d;q(w))yﬂ}
where
27 0 -
Q= Cldiag (v, () Co +| 78 2 .
( V) 0 pjoryIx,
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3.A. DERIVATION OF ALGORITHM 2

Therefore,
q*(v) is the N (g0, Bq(r)) density function,
where
Hg(v) = Zq(v) Cfdiag(wq(w)) Y,
and

-1
U_2I2 0
Y. = | Cldiag {v, N CL+| P .
q(v) ( { a( )} 0 Mq(l/ag)IKu

Expressions for B2y and jig1/52)

p(oglrest) o< p(ulog)p(oglan)
1
= |o2Ig, | ?exp {—#HuHQ} (02) 2 ! exp{(1/a,) [o2} + const.
Taking the logarithm of both sides, we have

—%Ku log(o2) - %%Huﬂ2 - %log(ag) - (1/ay) Jo2 + const.

- {% (Ku+1) +1}log(oy) - (%HUH2 +ay') /o2 + const.

log p(o2|rest)

Taking expectations, we get

log q*(o2) E, {logp(aghest)} + const.

= - {%(Ku +1)+ 1}10g(03) - (%Eq”u”2 + Mq(l/au)) /o2 + const
Noting that E,|u? = l#2g ) |2 + tr (Zq(u)), we have
{5+ 1)+ 1 og(03) = (5 {l1gu I” + tr (Bgw))} + 1a1/0)) 10

+const

log ¢*(02)

Therefore,

1
da(K,
7(02) e (o) 12 +1)H}exp(—é[%{ﬂc,(m2+Uf(2q<u>)}+Nq(1/au>])

which is of the form of an Inverse-Gamma distribution with parameters
Aq(aa) = %(Ku + 1), and

Bq(o2) = 5 U Bqqu I” + 1 (Zgu)) } + Ha(1/a,)-
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3.A. DERIVATION OF ALGORITHM 2

In addition, using Result 1.4.3,

Hq(1/o2) = 5 (Ku +1)[By(o2).

Expressions for B2y and ,(1/52)

The derivation of B2y and pg(1/02) is similar to that for q*(02). The optimal ¢ density

satisfies

)—{%(K1,+1)+1}

¢*(03) o< (o} exp (=25 [5 {lhgqw) |2 + 01 (Zg))} + g0 ])

which is of the form of an Inverse-Gamma distribution with parameters
Aq(o‘%) = %(Kv + 1) and

By(o2) = 5 U a(o) 7+t (Zg(0)) } + Hg(1/as)-
Also,

Hq(1/02) = 5 (Ko + 1)/ By(o2).

Expressions for By, and fi1/q,)

p(aulrest) o p(oilau)p(an)
= (l/au)l/2 exp{-(1/a,) [o2} (au)féf1 exp{-(1/A2%) Ja,} + const.

Taking the logarithm, we get
logp(ayrest) = -2log(ay) - (0,2 + A,?)/a, + const.

Taking expectations:
logg*(ay) = Eq{logp(ay,lrest)} + const
= -2log(ay) - Eq (0% + A;?) Jay + const.
= —2log(ay) - (Mq(l/oﬁ) + A;?) [ay + const
Therefore,

q" (ay) o< (QU)_2 eXP{_ (Mq(1/ag) + A;2) /au}
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3.A. DERIVATION OF ALGORITHM 2

which is of the form of an Inverse-Gamma distribution with parameters
Aq(au) = 1, and

By(au) = Ha(1)o2) + Au’-

In addition, using Result 1.4.3,

Hg(1/au) = 1/ By(ay)-

Expressions for By,,), and fiy1/a,)

The derivation of By(,,), and fi4(1/4,) is equivalent to that for ¢*(a,). The optimal ¢

density satisfies
q*(ay) o< (ap) P exp {= (1) + A°) Jav }

which is of the form of an Inverse-Gamma distribution with parameters
Aq(av) = 1, and

-2
By(a,) = Hq(1/o2) + Ay~
Also,

Hg(ay) = Hg(1/ay) = 1/ By(ay)-

Derivation of the p,, and ¥, updates

The updates for p,(,) and 3,,) are based on maximisation of the current value of the
marginal log-likelihood lower bound log p(y; g, Hg(w) Eq(w)) over these parameters using

fixed point iteration. Wand (2014) shows that the updates reduce to

1 "\
Yyw) © {—2vec ((Dvec(Eq(w))S) )}

T
Baw) < Hgw) t g(w) (Duq(wﬁ )
where
S=E, {logp(y|1/, w)+ logp(w|ag)} )

D denotes derivative vector, as defined in Magnus & Neudecker (1999) and vec and vec™*

are as defined in Wand (2014). However, an equivalent expression for the first of these
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3.A. DERIVATION OF ALGORITHM 2

updates is
-1
S (-Huq(w)s) (3.14)

where H denotes the Hessian matrix as defined in Magnus & Neudecker (1999). We work
with this alternative form here. Proposition 3.A.1 gives justification for expression (3.14).

Full details of the proof of Proposition 3.A.1 are given in Appendix 3.C.

Proposition 3.A.1. Consider the d x 1 random wvector x which follows the mul-
tivariate normal distribution and has density function of the form f(x;p,X) =

1
S 2eap {§(x - p) 'S (@ - p)}, then

THuf (1, 2) = vee ! (Dyee(sy f (@3 1, ) -

An explicit expression for S is

S = —lTpr,q(w) - un(Tg)exp {—Cwuq(w) + %diagonal (Cqu(w)Cg)}
0'_2I2 0
1 Y
—3tr (o)1) * Zaw))
0 1oz

- (n + % + 1) log (27) — % log (03) - log (og) .
This leads to

d S = —1Tdep,q(w)

Hq(w)
. 13 T
+qu(rg)d1ag (exp {—Cwuq(w) + 5diagonal (Cqu(w)Cw)}) deuq(w)
0_212 0
gy | Aty
0 KBea/on)d
. T
([ﬂq(r,%) © exp {—C’wuq(w) + %dlagonal (Cqu(w)Cg)} - 1] C,
07212 0
T ol
‘“«w>[ Uq(w)-

0 pysond
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3.A. DERIVATION OF ALGORITHM 2

Then, by Theorem 6, Chapter 5, of Magnus & Neudecker (1999),

T
(DuyyS) = CTltyrz) © exp{~Cuotty(w) + sdiagonal (C Ty CT)} - 1]
[ O',.;QIQ 0 ]
- Hg(w)-
0 et |
Next,
T
dQHq(w)S = (uq(rlzl)@exp[(duq(w))T{_Cwuq(w)+%diag0nal(Cw2q(w)C5)}] (O
-2
| o371 0
(i) [ ” ]
0 pyaon)d

[{uq(rg) © (diag [exp {—C’wpq(w) + %diagonal (Cqu(w)Cg)}]

T2
T r| 07713 0
% (Cudityw)))} Cu-(dpgwy) | ” Aty
0 pya2yl

d“q(w)

Then, using Result 1.4.11,

d2p,q(w)S {(dlag (/.Lq(T2)) diag [exp{ Cubtgw) + dlagonal (C Eq(w)C’w

0_—2

T T
x (~Cudityw))) Cuw— (dBy(w)) [ ! ] dpy(w)
0wyt

(d“q(w))T ( - ngiag[“q(rﬁ) © exp{ - CW“q(w)
+%diagonal(Cqu(w)Cz)}])deuq(w)
O',;ZIQ 0

~ (dttgw) !

d“q(W)
0 pyapzl ]

Therefore, by Theorem 6, Chapter 6, of Magnus & Neudecker (1999),

-H S = C’Zjdiag [“q(r?,) © exp {Cwuq(w) + %diagonal (Cqu(w)Cg)}] C,

|: 0;212 0 ]
=+ .
0wyt

Combining these expressions leads to the updates in Algorithm 2.

Hq(w)
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3.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

3.B Derivation for the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given in (3.14) is
108 p(Y3 4 Bg(w) Bg(w)) = 3 (Ku+Ky+4) - 2log(2m) +logD (5(K, +1)) - 2log(7)
+log I (§(K, + 1)) ~ log(Ay) ~ log(4y) ~ 317 (Cupty(ur)
=517 {1q(r2) @ exD (Yy(w) )} ~ log(03) ~log(a7)
+3108[Zg0)| + 5108 [Zgo)] - 737 (I1gm) | + t1(Zy(a)))
_ﬁ {lkgen I? + t1(Bq(y)) } = 3(Ku + 1) 10g(By(o2))
=3 (Ko + 1) 108(By(52)) =108 (1g(1/a3) + Au?)

~10g (Hg(1/o3) + A5%) + Ha(1/02) Ha(1fan) + Ha(1/02)Ha(1/an)-

The derivation of the logarithm lower bound on the marginal likelihood is due to

logp(y;q) Eq{logp(y,B,u,v,v,02,0%, ay,ay) —log ¢* (B,u,v,v,02,02, ay, ay) }

E {logp(y,u w, o 37 gaauvav) logq (V w, o 12u 12)7a1uav)}

We can further factorise the true joint density since the distribution of y does not depend

2 2 .
on 0}, 0,y OT Gy

o2 o2 o2 o2
p(y,l/ W, 0y, vvauaav) p(y|V w)p(l/ W, Ty v?auﬁav)
Continuing in this fashion, we get

p(ylv,w) p(v|o2) p(w, 02,02, ay, a,)

p(y7’/ w,o 12u g’aluav)

p(ylv,w) p(vlod) p(wloy) p(os, o3, au, av)

p(ylv,w) p(vloy) p(wloy) p(os) p(e]) plaw) plav)

since the distribution of v does not depend on w, o 3, ay Or ay, and the distribution of w
does not depend on a, or a,. Also, JZ, 012) ,a,, and a, are independent.

The approximate joint density also factorises according to (3.10):

(v w, 0,07, au ay) = ¢(v) g(w) a(o7) 4(03) a(au) a(ay).

Using the above factorisations, the new expression for the logarithm lower bound is

84



3.B. DERIVATION FOR THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

logp(y;q) = Eq{logp(ylv,w)} + Eg{logp(vlos) - ¢*(v)}
+E, {logp(w|oy) —logq*(w)} + B, {log p(oz]au) ~log ¢* (07) }
+Eg{logp(a3lay) —logq* (o)} + By {log p(a,) —log ¢* (au)}
+Eqg {logp(av) —logq*(av)} .

The derivation of each component is given as follows.
Expression for E, {logp(y|lv,w)}

Firstly,

p(ylv,w) = (2m)7"?|diag {exp(Cuw)} |/
exXp {_% Y- CV’/)T diag {exp(—wa)}
(y-Cwr)}.

Note that

exp{(Cuw),} ... 0

diag {exp(Cow)} | . . :
0 ... exp{(Cow),}
= exp{(C,w),} x...xexp{(Cypw),}
exp{1T (C,w)}

and
-1 (y-Cv)" diag {exp(-Cw)} (y - Cov)
- _% (C’Vy)T diag {exp (-C,w)} (C,v)
= —1r)diag{exp (-Cuw)}ry
= 317 {rl oexp(-C,w)}
where

r, = Cyv, and
r2 = diagonal{(C,,V)(Cl,V)T}.

Therefore
logp(ylv,w) = -Zlog(2r)- 31" (Cuw) - 31" {rZ @exp(-Cyw)}.
Taking expectations we get
Ey{logp(ylv,w)} = -5log(2m) = 317 (Cubtyrey) = 317 {Bq(rz) @ exp ($g(w)) } -
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where

E, [diagonal {(C,v) (C,v)"}]

diagonal [ E, {(C,v) (Cow)"}]

diagonal {(Cotty()) (Cubtywy) " + CoZy) C1}-

Fa(r2)

Expression for E, {logp(v|o?) —logg*(v)}
First note that
logp(vloy) = ~log(2r) -~ (§ +1)log(2m) - log(v3) — § log(o7,) - ﬁ\\ﬁllQ — 5oz .

Taking expectations we get

E, {logp(l/|ag)} = —log(27) - (g +1)log(2m) - log(aé) - %Eq {log(ag)}
—%Eq (181%) = 553 Eq (|u]?)
= —log(2m) - (g +1)log(27) - log(ag) - %Eq {log(ag)}
=57 kg I” + t (Zq@))} = 3ta01j2) Uktgan |* + 11 (Zg) -
Also,

E,{logq*(v)} = %(Ku +2)log(2m) + %(Ku +2)+ %log |2q(l,)|.

Thus, we get

Eq{logp(v|o?) -logq*(v)} = —Iog(ag) - 2K, E, (log(02)) + 3 log gl
2 il 15 (By)) 3, 2

~3Ha1jo) kg |* + tr (Zg)) -
Expression for E, {logp(w|o2) -logq¢*(w)}

Similar to the previous derivation we get

Eq{logp(wlo?) -logq*(w)} = —log(ag) - %Kv Eqy (log(a2)) + %log 1)l
_ﬁ {Ilg 7+ tr (Sgeq))} + 5 (Ku +2)
~3ta1/03) {IBaw) I* + tr (Bgw)) }-

Expression for E, {logp(c2|a,) —loggq*(c2)}
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Firstly,

log p(og|aw) -

e
logq*(o7) = logi-2

5 (Ky+1)

~log Bq<<f13>2 (03)—%(KU+1)—1 exp (_Bq;;«%))

5 log(ay) +log T {%(Ku + 1)} - %log(ﬂ) + %Ku log(c2)
+(1/07) (Byozy —ai') = 3 (Ku + 1) log (By(e2))

Taking expectations we get
Eq{logp(oylau) ~logq*(o3)}

E,{log(ay)} +logT {%(Ku + 1)} - Llog(m)

*Hq(1/3) (Ba(oz) = Pa(1/an)) + 3Ku Eq {log(o3) }
—3 (Ku+1)log (By(,2))
Expression for E, {logp(o2|a,) —logq*(c2)}

Similar to the previous derivation we get

E, {logp(a

3|av)—logq*(ag)} 5E, {log(av)}+logf{%(Kv+1)}

~ 3 log(m)
*Hq(102) (By(a2) = Ha(1/an)) + 3K By {log(07) }
—5 (Ky+ 1) log (By(e2)) -
Expression E, {logp(a,) —logq*(a,)}
The difference of the logarithms are
1
Azl Az
logp(ay) —logg*(au) = log4 =+ e
B ay, glay
~log {5 () exp ()}
—log(Ay) - log F( )+ ; log(au) +(1/ay) ( (aw) ~ A{f)
- log(Bq(au))-
Then, substituting By(q,) from Algorithm 2 gives
logp(ay) —logg*(au) = —log(Au) - 5log(m) + 3log(au) + pig(1j02)/0u
—log(pg(1/02) + A3°)-
Taking expectations, we get
Eq{logp(ay) —logq*(ay)} = —log(Ay) - 3log(m) + 3Eq {1og(au)} + te(1/02) He(1/an)
~log(pg(1/02) + A3°)-
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Expression E, {logp(a,) —loggq*(a,)}

Similar to the previous derivation we get

Eq {Iogp(av) —log q*(av)} = _10g(Av) - %log(ﬂ-) + %Eq {10g(av)} T Hg(1/02)Hq(1/av)
—log(tg(1/02) + A5%)-

Adding all expressions together, we get the lower bound expression
log p(¥; 4 Bg(w)r Dq(w)) = % (Ky+ Ky +4) - 5log(2m) +logI’ (%(Ku + 1)) - 2log()
+log T (5(Ky +1)) —log(Au) —log(Ay) = 517 (Cupryer)
217 {Hq(rz) @ 3P (Yy(w) )} ~log(05) ~log(o3)
+5108[Zq)|+ 5108 [Zg)] - 77 (I1gm) |7 + t1(Zy(s)))
=557 { g I + t1(Bg(y))} = 5 (K + 1) log(By(o2))
=5 (K + 1)10g(By(oz)) =108 (1g(1/02) + Au*)

~10g (Hg(1/03) + A5%) + Ha(1/02)Ha(1fan) + Ha(1/02)Ha(1/an)-

Note the following cancellations:

~31ta(1/o2) U+t (Zg)) } + ta(1/02) (Bao2) = Ha(1/an)) »

where
By(o) = 3 {IttqqI” + 12 (Bqew) } + o(1/00)
and
~514(1/02) kg I* + 1 (Sqe)) } + 1a1/02) (Bagoz) = Ha(1fan))
where

Byo2) = 5 gy |” + 7 (Zg(e)) } + Ha(1/an)-
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3.C Proof of Proposition 3.A.1

We begin by expanding the first differential with respect to vec (X) in the right-hand side
of Proposition 3.A.1:

(4502 exp (-3 @ - 5 (@ 0)}

A5l Zd[exp {4 (@ - ) B (2 )]

dvec(z)f($§ p, )

S 2dSlexp (-4 (- ) = (2 - )
W52 (b (- )@ - p)d=))
xexp{-3 (@ - p) T (z-p)}.

Using Results 1.4.1 (b) and (c), we get

dveces) F(@mE) = ~3[S]2[Slr (5745 exp {4 (2 - ) =7 (2~ )
LSzt {2 - p) (2 - ) (-2 (dD)S )
xexp{-3 (z-p) T (x-p)}.
Next, using Results 1.4.13 and 1.4.1 (a), we see that
dvee(s F@i . 3) = -3E Zexp {4 (@ - 1) =7 (2 - )} vee( S )dvee()
SIS Zexp (-1 (2 - ) £ (2 - )
xvec(B (- p) (- p)" T dvec(XT).
Thus,

1 _ .
vee™! (Dyec(sy f (i1, B)) = —3/3 2exp{-5 (z - )" 27 (- p)} 27

HIS Zexp (- (z- ) £ (- )} 5
x(z—p) (z-p) T

- A e (- @) = @ - w)
xS I - (z-p)' =7},
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Now expanding the left-hand side of Proposition 3.A.1 we have

Q@ ®) = (4202 )exp {4 @ - = (o)}
WS 2d[exp{-L (@ - ) =7 (- )]

172 [~ {-(dp) SN - o) + (- ) S (dp)}]
xexp{~3 (@ - p)" T (x - p)}

S 2exp {-4 (@ - )" S (@ - )} (2 - ) = s

Next, we take the second differential with respect to p:

Gf@n®) = du][S Tep (-3 @-p) 5 @-w) @-p)'S ] du
- Jan{ErEE-psten (- @- S @ 0)
B2 - ) = s fep {4 (2 - )" = (- )} di
- [ErECan s ten (- (o - w2 @ - )
HS[EE (2 - ) (- )" £ (dp)T
xexp {~5 (x - )" 27" (z - p)}]dps
- <du>T[—|z|‘%exp{—%<w—u>T2-1<w—u>}z-1
< {I-(z-p)(z-p) =1 |dp.
Therefore,
Huf(@im %) = IS Zexp{-L(z-p) £ (2 - )} S {I - (z-p) (z-p) 7).

Proposition 3.A.1 follows immediately. This proposition was inspired by a result in the

appendix of Opper & Archambeau (2009).
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Chapter 4

Heteroscedastic semiparametric

regression extensions

4.1 Introduction

The 2010s has engendered an unprecedented explosion of data, spurring a need for faster
and increasingly flexible techniques to extrapolate and make sense of such data. The use of
semiparametric regression (e.g. Ruppert et al., 2003, 2009) provides a significant collection
of tractable statistical techniques, however more inline with datasets comprising moderate
sample sizes and batch processing. Of recent, Luts et al. (2013) developed algorithms
to perform semiparametric regression analysis in real time, where the data is processed
as it is collected and promptly made available through modern technologies. This new
nonparametric regression methodology is especially geared toward high volume/velocity
data. Part of this chapter extends their approach to adjust for possible heteroscedasticity.

Chapter 3 has shown that ignorance of significant heteroscedasticity is likely to lead to
inaccurate inferential statistics. A remedy for this is the employment of heteroscedastic
nonparametric regression. In this chapter we explore two other extensions to the univariate
nonparametric regression model. Here we instead focus on bivariate predictor nonpara-
metric regression and additive models. The modularity of our approach is utilised here

since the extension to bivariate and additive models has been relatively straightforward.

The content of this chapter is published as: Menictas, M and Wand. M.P. (2015). Variational
inference for heteroscedastic semiparametric regression. Australian and New Zealand Journal of Statistics,
57, Number 1, 119-138. This research was also presented at the Australian Statistical Conference in
conjunction with the Institute of Mathematical Statistics Annual Meeting, Sydney, 2014.
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4.2. BIVARIATE PREDICTOR NONPARAMETRIC REGRESSION

Much like in Chapter 3 we take a Bayesian approach here as well by implementing a
non-conjugate MFVB strategy.

The following section describes the bivariate nonparametric regression extension method-
ology and illustrates this approach on simulated and real data. Accuracy scores and time
comparisons are also given. Section 4.3 describes the additive model extension and also
provides some illustrations on real data. Finally in Section 4.4 we extend the work of Luts

et al. (2013) to accommodate heteroscedasticity.

4.2 Bivariate predictor nonparametric regression

Bivariate nonparametric regression is of particular interest to a number of disciplines,
such as geology, oceanography, public health and mining. This diverse area of statistics
deals with tractable smoothing of point clouds where we would be interested in the mean
response as a bivariate function of, for instance, the longitude and latitude of a certain
geographical location. Bivariate smoothing and geostatistics have many similarities, for
instance, geostatistics is concerned with converting geographically referenced observations
to increasingly more legible maps (e.g. Cressie, 1993) and hence deals with a bivariate
predictor component.

As seen in previous chapters, the use of penalized spline smoothing requires a set of
basis functions that enables the possibility of nonlinear structure. Bivariate smoothing on
the other hand requires bivariate basis functions. This extension can be treated in at least
two specific ways: (i) tensor product bases and (ii) radial basis functions. More detail of
these approaches is given in Ruppert et al. (2003). A possible difficulty of tensor product
bases is their dependence on the position of the coordinate axes, causing the results to
change if the geographical locations were measured on axes with different positions. On
the other hand, radial basis functions are invariant to rotation of the axes. In nongeo-
graphical applications rotational invariance is not an obstacle, but for geographical data
it is important to know that the answers are not affected by axis position. Hence, for this
extension we use radial basis functions for bivariate smoothing, in particular the low-rank

thin plate spline bases.
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4.2.1 Model description

Algorithm 2 is relatively easy to extend to its bivariate extension. The data are of the

form

(wiayi)7 € €R27 Yi eR. (41)

In classical geostatistics applications the x;s represent geographical locations, such as lati-
tude and longitude. However, in (4.1) the @;s could also represent pairs of non-geographical

measurements. The bivariate version of (3.2) is

Yi B N(f(wl)vg(xZ))a I<i<n, (42)

where f and g are real-valued smooth functions on R?. The bivariate analogue of (3.3) is

Ku ‘
f(®) = Bo+Bia+ Y uz(w), up " N(0,07)
k=1
K, » (4.3)
and g(x) = exp|y+vyiz+ ka 2(z) |, vk~ N(0,02),
k=1

where B, and ~, are each 2 x 1 vectors of fixed effects. The functions {2}/ : 1 <k < K, }
and {z} : 1 <k < K,} now represent bivariate spline basis functions. A reasonable default

for the z;! (Ruppert et al., 2003) is the low-rank thin plate spline basis with kth element:

zi(@) = r(|z - ki) [r(sg - mi DI, (4.4)
1<k k' <K,
where KY,..., K} is a set of bivariate knot locations that efficiently cover the space of the

x;s and 7(z) = 22 log(z). The default z's have an analogous definition.

Comparing this set-up to the univariate nonparametric heteroscedastic regression model,
treated in Chapter 3, the only differences are the basis functions and their coefficients.
Hence, Algorithm 2 can be used to fit the bivariate nonparametric heteroscedastic regres-

sion model by replacing v, w, C,, and C,, from Section 3.2 with

Bo Y0
v= 51 y W= 7 7CVE|:1wiT ZI?(:BZ)]

and C,, = [1 x! zz(wz)]

u v

We have carried out extensive assessment of the bivariate version of Algorithm 2 to assess
accuracy and computing time of model (4.2). Sections 4.2.2 and 4.2.3 give the details of

a simulation study and real data example.
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Figure 4.1: Left panel: Contour plot illustrating the simulation setting given by (4.5).
Right panel: Heat plot corresponding to (4.5).

4.2.2 Simulation study

We consider the following true mean and log variance functions for our simulation setting.

This is illustrated in Figure 4.1.

02 | [ 0.360 0.252
flzr,22) = 0199+12.92410(] ™' | ,
s 05 || 0.252 0.360
o6 [ 21 | [ 0375 | [ 0360 0.252
z |7 05 || 0.252 0.360 (4.5)
[ | o5 ] [ 0360 -0.252
+0 ; : :
( 2 0.5] ~0.252  0.360 D}
logg(x1,22) = -5.470+0.873cos (0.37(x1 +x2)) .

From this setting we generated 1000 datasets of size n = 200. Each model correspond-
ing to a new replication was fitted using MFVB corresponding to the bivariate version
of Algorithm 2 and MCMC based on a burnin of 5000, kept sample of 5000 and thin-
ning factor of 5. The MFVB iterations were terminated when the relative change in
log p(¥; ¢, Hg(w)s Zq(w)) fell below 1077,

Figure 4.2 illustrates an accuracy assessment where the accuracy scores for each pa-
rameter of interest are summarized as a boxplot. The parameters on the horizontal axis
of Figure 4.2 are the estimated approximate posterior density functions for f and g, eval-

uated at the sample quartiles of x1 and z9. We use @1, Q2 and Q3 to denote these sample
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Figure 4.2: Boxplot representation of accuracy values for MFVB against an MCMC bench-
mark, where the boxplots correspond to the mean function hexiles and variance function
hexiles.

quartiles. It is pleasing to see that most of the accuracy values for the bivariate mean
function lie above 90% and above 70% for the bivariate variance function. Figure 4.3
shows visual assessment of the approximate posterior density functions as given by using
MFVB in comparison with the MCMC benchmark for a single replication in the simula-
tion study. MFVB accuracy is seen to be excellent for the mean function hexiles and quite
good for the variance function hexiles.

The percentages of the true parameter coverage based on the approximate 95% credible
sets attained from the MFVB posterior densities are given in Table 4.1. All of the mean
function coverage values are showing excellent coverage of the truth, except for f(Q2,Q2)
and this may be due to the lack of data surrounding this region in our simulated data-
sets. Also, the variance function coverage values are doing well in terms of covering the
truth and this is consistent with the accuracy scores achieved by MFVB. An assessment
of the speed of the competing approaches has also been carried out. The run time of
each replication was monitored for both MCMC and MFVB. These times are summarized
in Table 4.2. This study was performed on a laptop computer (Intel Core i7 2.8GHz

processor, 16 GBytes of random access memory). These results show that on average
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Figure 4.3: Approzimate posterior density functions obtained via MFVB and MCMC for a
single replication of the simulation study. The pairs of density functions shown correspond
to the mean and variance functions heziles. The accuracy scores as defined in Section 1.9
are also displayed.
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f(Q1,Q1)  [f(Q2,Q2) [f(Q3,Q3) f(f(Q1,Q3) [f(Q3,Q1)

94 68 92 90 91
9(Q1,Q1)) 9(Q2,Q2) 9(Q3,Q3) 9(Q1,Q3) 9(Q3,Q1)
88 79 86 85 86

Table 4.1: Percentage coverage of the true parameter values by approzimate 95% cred-
ible intervals based on wvariational Bayes approximate posterior density functions. The
percentages are based on 1000 replications.

MCMC MFVB
(533.68, 534.18)  (4.05, 4.52)

Table 4.2: 99% Wilcoxon confidence intervals based on run times in seconds for MCMC
and MFVB fitting.

MFVB is at least 100 times faster than our MCMC benchmark.

4.2.3 Application

We fitted (4.3) to geo-referenced data on sea-floor sediment pollution in the North Sea
(source: Pebesma & Duin, 2005). The data are stored in the pcb data-frame within the
R package gstat (Pebesma, 2004). The response variable is a measurement of polychlori-
nated biphenyl with Ballschmiter-Zell congener number 138 (PCB-138). The motivating
study is concerned with spatial and temporal variability of PCB-138. For the purposes
of illustration, we ignore the temporal aspect and focus on geographical variability in the
mean and variance of the response. In the notation of model (4.2)—(4.3), the variables are

x = (r1,22) where

x-coordinate in the Universal Mobile Telecommunications System for Zone 31,

I

29 = y-coordinate in the Universal Mobile Telecommunications System for Zone 31, and
y = PCB-138 measured on the sediment fraction smaller than 63 parts per million,

in pg/kg dry matter.

The sample size is n = 216 and K, = K, = 50 thin plate spline bases were used for each
functional fit. The estimated mean and standard deviation functions are shown in Figure

4.4. Both functions are seen to exhibit pronounced spatial effects. Simple geostatistical
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Figure 4.4: Left panel: Fitted mean function for the polychlorinated biphenyl data described
in the text, based on MFVB wvia Algorithm 2. Right panel: similar to top panel but for the
standard deviation function.

models that ignore the heteroscedasticity described by the right panel of Figure 4.4 would
have erroneous prediction intervals.

Figure 4.5 gives a visual assessment of the convergence of the bivariate analogue of
Algorithm 2 as it monitors successive values of log Q(y; 45 Pg(w)> Eq(w)). It is evident that
after approximately 75 iterations the Algorithm has reached convergence, after which
inference was made to achieve Figure 4.4.

Higher dimensional heteroscedastic nonparametric regression can be achieved via Al-
gorithm 2 with little notational change from the bivariate case treated here. The only
required modification involves higher-dimensional thin plate spline basis functions instead

of those given by (4.4).

4.3 Extension to additive models

The previous section showed how to construct tractable regression models for a bivariate
set of continuous predictors modelled as a smooth function. However in many regression
settings involving several continuous predictors, incorporation of multiple smooth func-
tions may be more suited. The assumption made here is that of additivity, hence they
are referred to as additive models (Ezekiel, 1924; Friedman & Stuetzle, 1981). Further-

more, we are dealing with models that need to accommodate heteroscedasticity, thus we
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Figure 4.5: Successive values of log p(y; 45 Bg(w):s X (w)) for monitoring the convergence of
non-conjugate MEVB given by the bivariate analogue of Algorithm 2.

incorporate the variance as a multiplicative function. Models of this type have a small

literature with Rigby & Stasinopoulos (2005) being a key reference. Their generic form is

d d
yi~N(ﬁo+ ij(xji),exp(70+ ZhJ(wﬂ)))’ 1<i<n. (4.6)
j=1 J=1

Here f; and hj, 1 < j <d, are smooth but otherwise arbitrary functions. Penalised splines
are easily extended to handle (4.6). Here we use penalized spline models of the form
K
ind.
fi(z) = Bjz+ Z Uj z}‘k(x), Ui~ N(O,aij
k=1
KJU ind.

and  h;(z) = yjz+ > vji z;’k(x)7 Vjg o~
k=1

(4.7)
N(0,07;

where the {z?k, 11<k< KJ“}, 1 < j <d, are spline basis functions of sizes K}‘, analogue to
those presented in Section 3.2. In addition the {z}’k :1<k< KJ“}, 1< j <d, are similarly
defined. The priors on the regression coefficients and standard deviation parameters are
ind. ind.
Bi " N(0,03), 7 ~ N(0,02),

4 . (4.8)
ouj ~ Half-Cauchy(A,), o, '~ Half-Cauchy(4,), 1<j<d.

99



4.3. EXTENSION TO ADDITIVE MODELS

The complete Bayesian hierarchical model corresponding to (4.6) is:
Y18, v, u,v ~N(XB + Zyu, diag {exp (X +Z,v)}),

ulo? ~ N (O, blockdiag (UijIKuj )) , v|o?~N (0, blockdiag (U%jIva )) ,
1<j<d 1<j<d

ai], |Gy ~ Inverse-Gammal( 3, law,), Gu; ~ Inverse-Gammay 3, 1/Aij ) (4.9)

O‘%J_ |ay; ~ Inverse—Gamma(%, ay;), o, ~ Inverse—Gamma(%, 1/ A%j ),
1<j<d, B~N(0, 031a1), ~~N(0, 02L41).

The differences of this model and that of Section 3.2 are that the design matrices are now

X = [1 w13 w2 - Tail1<i<n,

Zuz[[z;‘l(:vu)]1<_< (2@ ] [ | n] (4.10)

1<k<Ky, "S5 1ck<K,, © IS0 1<k<Ky, ~ 1<

Z, = [ [2,1’1(3611)] [222(90%)] [z,'jd(a:di)]

L<k<Ky, 1S T 1reK,, TLSsn 1<k<Koy, Kign]

The coefficient vectors are

Bo Y0
ﬂ ul V1
B = ,1 , Y= 7,1 , u=| |, and v=| : |, (4.11)
' ' uq vy
Ba Vd

where u; is the Ky x 1 vector containing the ujx. It is again convenient to combine the
mean function coefficients and variance function coefficients into single vectors as shown
in (3.6). The Bayesian model given by (4.9) admits a closed form non-conjugate MFVB
algorithm, with the regression coefficients for the full mean and variance functions each
being Multivariate Normal. Algorithm 3 gives the details of these closed form updates.
Convergence of Algorithm 3 is assessed using the lower-bound of the marginal log-

likelihood:
108 P(Y; @ () Do) = 5 {Zi1 (K, + Ky,) +4} - Zlog(2m) +logT (5 (K, + 1))

-2log(m) +logT (% (Z?:l Ky, +d- 1)) - Z?:l log(Ay,)
- Sialog(An,) = 317 (Cutty(w)) = 317 {Hgrz) © exp (Yg(e)}
—%(d+ 1) log(ag) - %(d +1) log(a?/) + %bg %00
+3108 30| = 577 (1t9(8) I + t1(Zy )
_ﬁ {lbgen I + 10 (Sg)) } = 3(Ziey Ko, +1) log(By(a2,))
~3(Z, Ky, + 1) log(By(s2,)) —log (:U’q(l/a?%) + AL?)

~108 (11q(1/03,) *+ Av2) * (1702, a1 fauy) * Ra(1/0%,) a1 auy)-
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Set up initial values:
Pow) 2 (29 Ky, +d+1)x1 vector, By(,) a (2§ Ky, + d+1)x(Z Ky, +d + 1) positive

definite matrix, “q(1/g2 ),,uq(l/g2 ) >0, and py(p2) an n x 1 vector.
uj vy

Cycle through:

1/)q(w) <~ exp {—Cwuq(w) + %diagonal (CMEQ(M)CL)}

-1

0’5213 0
E v) < CTd CV+
a(v) v 1ag{¢q(w)} 0  blockdiag (u /o2 I?(-)
1<j<d o(1/78,) 5
Hg(v) < Eq(,,)CZT,diag {%(w)} Y
05213 0 B
> < | CTdi © C.
a(w) w lag{“q('l‘%) ’(pQ(w)} * 0 blockdiag (,u 1/02 I})()
1<j<d (/o2 ) 5

Ho(w) < Haw) + Zg(w)] Co (Her2) © Py — 1)

0,;21-3 0

0 blockdia Es
1<j<d 8 (%(1/03],) KJ)

Hq(w)
Forj=1,...,d:

2 . 2
Hq(l/a"j) <1 (Mfl(l/cfij) +A“j) ’ ’uq(l/avj) < 1 ('uq(l/a%j) +Avj)

Kuj+1

20, ) W) |I2+tr():q(uj))

Ku7.+1

2“q(1/avj)+”“‘1(”j)”2+tr(2q(%))

Mq(l/agg‘) -

Mq(l/agj) -

until the absolute relative change in log p(y; ¢, Hg(w)s 3 4(w)) is negligible.

Algorithm 3: MFVB algorithm for the determination of the optimal parameters in ¢*(w),
q*(v), ¢*(02,), 4" (02;), ¢* (au;) and q*(av;), 1<j<d.
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The derivations of the optimal parameters in Algorithm 3 and the calculations correspond-
ing to the lower-bound of the marginal log-likelihood are similar to that described in the

Appendix 3.A and 3.B.

4.3.1 Application

Algorithm 3 has been applied to a data set from the Californian air pollution study
described in Breiman & Friedman (1985). The data set consists of 345 observations on

the four variables x;1, x;9, i3, ¥;, 1 <1 < 345. The predictors are defined as

x1 = pressure gradient (mm Hg) from Los Angeles International Airport to Daggett,
California,

x2 = inversion base height (feet)

x3 = inversion base temperature (degrees Fahrenheit),

and the response variable is

y = ozone concentration (ppm) at Sandburg Air Force Base.

Our model is

yi ™ N (Bo+ fr(an) + fa(a) + fa(xa), (4.12)

exp {vo + h1(z1;) + ho(x2;) + hs(x3)}) -
The data was standardised and the hyperparameters were set to have values og = 0, = A, =
A, = 10°, to achieve non-informativity. After fitting, the resulting values were transformed
to their original units. In addition the spline basis function sizes for modelling f1, fo
and f3 where 18 each. The same values were used for modelling hy, ho and hz. The
approximation of the mean function and standard deviation function is shown in Figure
4.6. Inference based on MCMC was carried out using the same convergence criteria as
explained in Section 4.2.2.

The estimated mean function f; has been vertically aligned to correspond to the re-
sponse data by plotting, for 1, the response with each of 2 and x5 set at their average.
In other words, we have evaluated the estimate of fo at Zo and estimate of f3 at 3 in
order to vertically align the estimated f; curve. Similar alignments have been used for fs,
f3, exp (h1/2), exp (h2/2), and exp (h3/2).

As is seen from Figure 4.6 MFVB and MCMC are showing excellent agreement in
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approx. of mean function approx. of mean function approx. of mean function

30

1 — wmrvB
| — mMcMme

25

0 1000 2000 3000 4000 5000
inversion base height Daggett pressure gradient inversion base temperature
approx. of std dev function approx. of std dev function approx. of std dev function

15
|
15
|
15

10

0 1000 2000 3000 4000
inversion base height Daggett pressure gradient inversion base temperature

Figure 4.6: Top panels: approzimation to the posterior mean functions f1, fa, and f3 and

their 95% credible sets. Bottom panels: approximation to the posterior standard deviation
functions exp (hi/2), exp(h2/2), and exp(hs/2) and their 95% credible sets.
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their fits. The MFVB approach was markedly faster for this example. Even though the
existence of heteroscedasticity in inversion base height and Dagget pressure gradient is
somewhat low, there is noticeable heteroscedasticity in inversion base temperature which

has been captured by model (4.12).

4.4 Real-time heteroscedastic nonparametric regression

The constant expansion of technological advancements in the 2010s so far has generated
larger volumes of data than ever before. Not only is this information growing bigger but
also increasing with higher speed.

Almost all nonparametric regression methodology presented to date make the assump-
tion that the data are processed in batch, that is, at the same time. However, some
disadvantages of batch processing include the requirement that analysis must wait until
the entire data set has been collected. In the real-time case, the analysis updates once
each new data point is collected. This is beneficial, and sometimes essential, for both
high volume and/or velocity data. Many procedures used in single predictor nonpara-
metric regression analysis use fully automated batch procedures however do not yet have
an online/real-time modification. Recently, Luts et al. (2013) developed MFVB-based
algorithms for performing semiparametric regression analysis in real time.

Algorithms that deal with the arrival of a stream of data points or just one data point
per iteration have recently been developed for variational Bayesian inference by the ma-
chine learning community (e.g. Hoffman et al., 2010; Wang et al., 2011). This methodology
has become known as online mean field variational Bayes or online variational Bayes for
short. While most procedures to date involve storing a small amount of data in memory,
they still need knowledge of the amount of data points from the beginning of the algo-
rithm. In contrast, Luts et al. (2013) develop an online algorithm that uses past data
only in the form of sufficient statistics and is relevant to fitting mixed models. We ex-
tend their approach by developing a variation of Algorithm 2 that allows for real-time
heteroscedastic nonparametric regression. Unlike Luts et al. (2013) however, our real time
MFVB algorithm is hindered by the fact that it requires storage of the entire data set.
An extension to our algorithm, that only uses storage of the sufficient statistics would be
worthwhile for future investigation.

The dependence on the data in Algorithm 2 is evident only in the response vector y
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and the design matrices C), and C|,,. These quantities are simple to update when a new
observation ynew and its corresponding {(2 + K,,) x 1} and {(2 + K,) x 1} vectors of design

components ¢, new and €y new arrives. For instance, the new C, matrix is
T T
C, < [CV Cu,new] .

The corresponding updates for ypew and C,, are given in Algorithm 4. The starting values

1. Use Algorithm 2 to perform batch-based tuning runs, analogous to those described
in Algorithm 2’ of Luts et al. (2014), and determine a warm-up sample size Nwarm
for which convergence is validated.

2. Set pgy, Bg)s Bg(w)r Dg(w)r Be(1/02)s Ad Hy(1/52) to their values obtained in the
warm up batch-based tuning run with sample size nyarm- Next set ywarm to be the
response vector on the first nyarm observations. Also set C, warm and Cy, warm to be
the design matrices based on the first nyarm observations. Lastly assign n < nwarm.

3. Cycle:

Read in ynew (1x1), cunew {(2+ Ky)x1} and cenew {(2+ K,) x1}; n<n+l
C, < [C; Cu,new]T ; Cu < [CI; Cw,new]T ;Y <— [yT ynew]T
Ha(rz) < diagonal{(y - Cuttyu)) (4~ Cubtyy) + Cu By CT )
Y y(w) © XD {—Cwuq(w) + 1diagonal (CwX () CL) }

o O'BgIQ 0 !
Yy < | Crdiag (d’q(W)) Cy,+ 0 7
Hq(/o I,

Hqw) < Eq(,,)ClT,diag (d’q(w)) Yy

w 7'2 w w

- 0'5212 0
Hat) = P + Zaw) | CL (o) %) =1) = | g7 g | e

Patfaw) < 1 (auo2) + A37) 5 tq(jaw) < 1 (Hejoz) + ALY
Hg(1/02) < (Ku + 1)/{28g(1/au)* | Bguy I? +7 (Bgeu)) }

Lg(1/02) < (Ko + 1) /{28401 /00)* | o) >+t (Zq(w))}

until the analysis is complete or data are no longer available.

Algorithm 4: MFVB algorithm for real-time determination of the optimal parameters in
¢ (W), V), ¢*(02), ¢*(07), " (a) and ¢*(ay).

for the real-time procedure are determined by performing a sufficiently large batch fit.
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When implementing Algorithm 4, the approximate posterior density functions of the
model parameters are updated continually as each new data point arrives.

The web-site realtime-semiparametric-regression.net features a movie that il-
lustrates Algorithm 4 for data simulated according to setting D from Table 3.1. The
warm-up sample size is nwarm = 500. The link for the movie is titled Heteroscedastic
nonparametric regression and portrays the effectiveness of real time processing for
mean and standard deviation function fitting. Figure 4.7 illustrates the mean and vari-
ance function fits for the first online data point at n = 501 and again at the last online
data point where n = 5000. As each new data point is processed, the mean and variance

function fits improve as seen from this comparison.

4.5 Discussion

This chapter extends the work in Chapter 3 as we consider a wider class of models for fitting
and inference using non-conjugate MFVB. We have developed closed form algorithms for
both fast batch and real-time fitting and inference for a range of semiparametric regression
models that have a heteroscedastic component. The methodology developed here applies
to increasingly complex models as a result of the locality property of MFVB inference
methods in general. In both the simulated and actual data settings, the new methodology

is seen to perform very well.
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(b) Resulting mean and standard deviation function fits once all 5000 data points have arrived.

Figure 4.7: Real-time approzimate non-conjugate MEFVB regression fits for the simulated
data according to setting D from Table 3.1.
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Chapter 5

Mean field variational Bayes for

group-specific curve models

5.1 Introduction

In this chapter we develop MFVB algorithms catered to fitting large data sets that exhibit
multilevel and longitudinal structures. In addition to developing the general MFVB algo-
rithms that we have so far seen in the previous chapters of this thesis, here we also look
into streamlining these algorithms in terms of storage and number of operations needed.
Streamlining of such algorithms is essential when using MFVB for fitting and inference in
multilevel and longitudinal models. This is often the case since a naive implementation
would result in cubic dependence on the number of groups within a level of the model
being considered.

Lee & Wand (2015) develop streamlined algorithms for treatment of two-level models
with Gaussian and binary responses and show that the number of operations required
are linear in the number of groups in each level. This allows for much faster and highly
accurate Bayesian inference for large longitudinal and multilevel models. We adopt the
methodology used in Lee & Wand (2015) to streamline the two-level MFVB algorithm
used in Section 5.2.3 and also extend their methodology to cater to the three-level model
considered in Section 5.3.2. These algorithms have some inferential inaccuracy, however, as
represented by the diagnostic illustrations in this chapter, these inaccuracies are relatively
insignificant when compared to the computational time and storage savings afforded by

the streamlined MFVB algorithm. The software package Infer.NET allows treatment of
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5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

such models, however, its non-streamlined implementation makes MFVB very slow when
the number of groups is large.

Multilevel and longitudinal models, e.g. Diggle et al. (2002), Fitzmaurice et al. (2012),
Gelman & Hill (2006) and Goldstein (2011), is a prominent area in Statistics, however the
union of these areas and that of variational methods has not yet appeared to be eminent.
Recent contributions are found in Ormerod & Wand (2010) and Luts et al. (2014), which
use MFVB for longitudinal /multilevel data but invert the effects covariance matrix pa-
rameter updates in a naive fashion. The main idea of this chapter is to produce MFVB
algorithms for multilevel /longitudinal data based on the naive inversion of the effects co-
variance matrix and compare this to the algorithms using the streamlined inversion of the
effects covariance matrix. We restrict attention to the two-level and three-level Gaussian
response models.

The motivation for using a streamlined MFVB algorithm in this chapter comes from
a three-level longitudinal data set that represents frequency dependent backscatter coef-
ficients for induced tumors in rodents (Simpson, 2013). The structure of this data led to
the consideration of a variant of the general MFVB approach, referred to as streamlined
MFVB, which we explore in further detail in this chapter.

Section 5.2 gives description of the two-level Gaussian response model in terms of its
construction and corresponding MFVB methodology and Section 5.3 provides similar de-
scriptions for the three-level Gaussian response model. Comprehensive simulation studies
and real data examples are considered for both the two-level and three-level Gaussian
response models. Appendix 5.A and 5.B provide the derivations for the naive two-level

model Algorithm and its corresponding lower bound on the marginal log-likelihood.

5.2 Two-level Gaussian response model

We consider the development of a model for fitting longitudinal and multilevel data such as
that illustrated in Figure 5.1. There are a number of things to consider when developing
a model that best represents data of this type. For instance, the repeated measures or
longitudinal aspect is crucial since one would expect, upon inspection of Figure 5.1, that
utilising within-subject information would be helpful. So, at the very least we would want
to include a variance component that controls for the deviation within each subject, i.e.,

a random intercept. In addition, one might also consider a random slope which would
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Figure 5.1: Example of a longitudinal two-level model data-set.

account for possible variability in the slopes of the growth curves.

The nonlinearity of such data suggests that incorporation of a nonparametric function
f would be beneficial. However, f would represent a global function which does not depend
on each subject. In order to cater for each individual’s nonlinear component, we might

consider a model of the following form:
Yij =f(xij)+gi(xij)+67;j, 1<i<m, 1<7<n,, (5.1)

where f is a smooth function and the g;, 1 <i < m, are random functions with mean zero.
Both f and g can be modeled as regression splines and then placed into the mixed model
framework.

The regression splines associated with f have a fixed component that caters for the
linear part of the model, and a random component that allows for departures from linearity.
It is important to note, on the other hand, since the g; are random with zero mean, the

linear part of the regression spline is random, rather than fixed. A linear penalised spline
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5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

model for (5.1) is

Lgbl

f(l‘”) = o +51x2j + Z uiblzibl xzj)

&P
and gi(xij) = 0g; + 014 Tij + Z uflrngrp(l'”) 1<i<m, 1<j<n,,
=1

gbl

where the u5” and 25" (x;;) are the spline coefficient and spline basis function for the ¢th

knot in the global part of the model, that is, corresponding to the highest level of the
two-level model structure. The u$” and z;(x;;) are the spline coefficient and spline basis
function for the fth knot of the ith subject, that corresponding to the lower level of the

grp

two-level model structure. A popular choice for the zj " and z;" are suitably transformed

cubic O’Sullivan splines, as described in Section 1.10. Equations (5.1) and (5.2) can be
represented in the mixed model representation as follows.

5.2.1 Mixed model representation

We define the following linear and non-linear predictors:

xi; = [1 ], gbl [ @) - zigtl(xij)] and zf]r." = [zf”’(wij) .. frg‘;p(xz])]
In addition, we define

B=[6o B1]", 8i=1[b0i 01]",

gbl _ gbl
us™ = [uf

(5.3)

bl ;
Ut ]T’ usP = [y&P grp

Lebl = [uf” U]
We can now write (5.2) as

gbl

f(zij) = ;B + 25 us®,

&rp grp

gi(xij) = x40, + 25 u;

We set Cov(u®') = 02,1, Cov(d;) = 3, an unstructured 2 x 2 covariance matrix which

allows for deviation from the typical linear component and lastly we set Cov(u;™) = JSYPI .
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We can now incorporate (5.1) into a mixed model framework by letting:

T11
Lin, B
x=| :+ |, B=|""| and (5.4)
S]1
Lm1
_wmnm' A
[ 25 2P 0 0 ... 0 0 | ]
25 a:. zg."p O 0 0 0 o1
1ng In1 “1n, grp
28 0 0 xy 257 ... 0 0 uj
: : 02
Z = gbl grp ’ u= grp |’ (55)
Z5,, 0 0 xop, 25y - 0 0 us
zﬁll 0 0 0 0 ... zp1 250 S
ug’
(28, 0 0 0 0 ... Ty, 250 | ) B
so we can use the mixed model representation
y=XpPB+Zu +e,
2
Ol Ly, 0 0 (5.6)
u . 2
where COV[ ]: 0 blockdiag (2,JgrpILgrp) o |
e 1<ism
0 0 oll

)

This semiparametric regression model can be treated using the following Gaussian linear

mixed model:

2
UgblILgbl 0

0 blockdiag (E , agQrPI L grp)

1<i<m

ylu~N(XB+ Zu, 02I), u~N|o0, (5.7)

5.2.2 Bayesian inference

Fitting (5.7) using standard mixed model software such as 1lme () (Pinheiro et al., 2009)
in the R computing language is achievable, but time consuming. Alternatively, we can
work with a hierarchical Bayesian version of (5.7) which warrants direct implementation
in standard software. We enforce oy, the o, ;, 1 <% <m, and the square-rooted diagonal

entries of X to possess Half-t prior distributions. This specification also allows for corre-
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5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

lation parameters within 3 to have uniform distributions on (-1,1), as shown in Huang
et al. (2013). Such priors are attained through auxiliary variable constructions exhibited
in Result 1.4.6.

In its entirety, the Bayesian hierarchical two-level Gaussian response model we deal

with here is:

y|B,u,02 ~N(XB+Zu,02l), B~N(0,031,),

2
| E N 0 UgblILgbl 0
“ ngl’ Ogrp ’ 0 blockdiag (2 , agrpI Lgrp) ’
1<i<m
0?|a. ~ Inverse-Gamma (3, 1/ac), ~ Inverse-Gamma (4, 1/A42),
(5.8)
02 |ag, ~ Inverse-Gamma (3, 1/ag,),  ag ~ Inverse-Gamma (5, 1/42,),

Yl|as1, as2 ~ Inverse-Wishart (v + 2 - 1, 2vdiag (1/ax 1, 1/as2)),
as,j ~ Inverse- Gamma( 1/A2 ), 1<5<2,
2

02 | @y, ~ Inverse-Gamma (3, 1/a,.,), @, ~ Inverse-Gamma (3, 1/A2 ).

where a., a1, axj, and a,,, represent the auxiliary variables that impose the aforemen-

2

tioned non-informative prior distributions on o2, agbl, 3, and o2, respectively. We also

grp?
note that (5.8) encompasses the setting of hyperparameters v, g, A., Ag,i, As 1, As 2 and
Ag.p, all of which are bound to be positive. The recommended setting for v is 2, which
ensures that Property 4 of Huang et al. (2013) holds. Non-informativity is achieved for the
remaining hyperparameters when they are set to very large values. Our default setting,
assuming the data has been transformed to have mean zero and unit standard deviation,
is 10°.

Figure 5.2 shows a directed acyclic graph representation of model (5.8) where ay, =

las1, as2]’, 6 =[01,...,0n]" and u,,, = [uf™, ..., ugP]".

5.2.3 Mean field variational Bayes methodology

The underpinning assumption of the MFVB approach for model (5.8) is to impose an

approximate product density restriction to the joint posterior density function of the form

p(ﬁau)aaaagblaaih grpvagaagblvzvagzrp|y) ~ q(ﬁvuuaavagblaazaagrp) (5 9)

xq(02,0%,, 5,0}

grp
Simplicity of the requisite calculations arise as a result of the graphical layout of model

(5.8) as conveyed by Figure 5.2. The graphical structure of (5.8) is useful in determining

113



5.2. TWO-LEVEL GAUSSIAN RESPONSE MODEL

2
€

B Y o e

Figure 5.2: Directed acyclic graph corresponding to the Bayesian hierarchical two-level
Gaussian response model in (5.8).

additional factorizations, i.e., induced factorizations. Factorizations such as these, can be
observed using a straightforward graphical test, known as moralisation, as explained in

Section 1.8.2. For example, all paths between 03 and {Ugbl,E,UQ } in Figure 5.2 must

grp

visit at least one of {y,3,u}. That is, the set of nodes {y,3,u} separates o2 from the set
{agzbl, 3,02 }. The use of Theorem 1.8.1 gives the result

grp
O‘? AL {Ug2b17 2’U§rp}|{y7ﬁ7 u}

Continuing this process for all nodes in Figure (5.2), we achieve the following induced

factorization:

2 2 2 ~
Q(/Ba U, g, Agply Ay Agrp,s 067ngl’ggrp7 2) ~

2 (5.10)
a(B,u) a(o2) a(ol,) a(2) a(o?,) a(ae) a(agm) {1—[1(](@2,]’)} ()
=

The ¢-densities are chosen to minimize the Kullback-Leibler distance between the left-
hand-side and right-hand-side of (5.9). As outlined in Section 1.5 the optimal g-densities,
denoted by ¢*, can be obtained through an iterative scheme arising from relationships

such as
q" (%) o< exp Eq {log p(Zlrest) } (5.11)
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where ‘rest’ denotes the random variables in the model not including 3. The full condi-
tional distributions each have standard forms resulting in closed form expressions for the
optimal g-densities. As a result, the optimal factors on the right-hand side of (5.10) have

the following forms (details of the derivation can be found in Appendix 5.A):
q*(B,u) is the N(tyg.4), Xq(8,u)) density function,
q*(gg) is the Inverse-Gamma (% (Z n; + 1) , Bq(ag)) density function,
i=1

q*(c2,) is the Inverse—Gamma(%(Lgbl +1), BQ(Ugbl)) density function,

q*(X) is the Inverse-Wishart(v +m + 1, By(s;y) density function,

2 (5.12)

q*(oy,,) is the Inverse—Gamma(%(m L,,+1), Bq(dérp)) density function,

q*(ac) is the Inverse-Gamma(1, By(,.)) density function,

q(ae
q* (agn) is the Inverse-Gamma(1, By(,,,,)) density function,
q*(as,;) is the Inverse-Gamma(5 + 1, By(qy, ;)) density function, 1<j <2,

q*(agy) is the Inverse-Gamma(1, B ) density function,

q(agrp)
for parameters Hg(B,u) and Xg(g4), the mean vector and covariance matrix of 7 (B,u),
By(s2), the rate parameter of q*(o?), B‘I(Uébl)’ the rate parameter of q*(agb,), By(s), the
rate matrix of ¢*(X), By(s2,,)s the rate parameter of q*(c2,), B
of ¢*(ac), B

and B

a(ac) the rate parameter

(agp1) the rate parameter of ¢*(ag), Bq(az’j), the rate parameter of ¢*(ax ;)

the rate parameter of ¢*(ag,). The parameters in these optimal g-densities

q(agrp)> srp

are obtained through a naive implementation which results in Algorithm 5 and uses the
notation C' = [X | Z]. As seen from (5.5) the Z matrix requires storage of zero’s which
can become computationally expensive given a large value for m. We aim to alleviate the
restriction of storing these zero’s in Section 5.2.4.

Convergence of Algorithm 5 is determined using the marginal log-likelihood lower
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Set up initial values:
Ha(1/o2)s (1102, ) Fa(1/o3y) Fa1/ac)s Pa(1fag) HaClfages) > 05 Ho(1faz, ;) > O
1<75<2, ¥y5u), and Mq(z—l) positive definite.

Cycle through:
Ha(au) < Ha(1/o2) Zq(8,)CTY

g8y < (Hg(1/02)C"C

051 0 0 -
L0 Q(l/ogbl)ILgbl 0
0 0 blockdiag (M), “tI(l/Uérp)ILgrp)

Byoz) < 3 {ll ¥ = Ctigpuy I? +tr (CTCZg(5.0))} + H(1/a)
Ha(1/o2) < 3 (i” + 1) /By(o2)

Byao) < Ha(1fo2) + A% Hg(1/ar) < 1/ Bq(ar)

By(o2,) < 2 Ul sy 17+ (Sqqusmn) )} + tg(1/0,)
Ha(1jo2,) 3 (L +1) /Bq((,gbl)

Bi(ag) < Hy(1go2,) ¥ AL Ha(1/age) < 1/ Ba(agn)

Byoz,) < 3 {1 Baqusmey 1P +tr (Bqqusm) )} + o1 fager)
Ho(1jozy) < 2 (M Law + 1) /Byoa )

-2,
By(agm) < Ho(1/02,) T Aews  Ha(agp) < Y/ Ba(ag)
BQ(E) < Z; {“4(50”’;(51-) + 2‘1(5@')} + 2vdiag (MQ(l/az,l)’Mq(l/aza))
Mq(Z}‘l) <~ (V +m+ 1) B;(lz)
For j=1,2:

Bq(aﬁ,j) v (M‘l(z_l))jj + UA%J’ Hq(1/as ;) < (% + 1) /Bq(az,j)

until the increase in log {B(y; q)} is negligible.

Algorithm 5: Naive MFVB algorithm for the estimation of the optimal parameters in
q* (,B,U), qyr (03)7 qyr (aE); q* (Usz)y q* (agbl)7 q* (Uzm): q* (agrp): q* (2); and q* (a’E)'
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bound (Appendix 5.B shows details on this derivation):

logp(y;q) = 2(y +p-1)log(2v) - an log(2m) — 4log(m) - glog(ag)
i=1

o7 Ul stage) 17+t ()} + 5108 [Zg(am|
+5 P+ L+ m(p+ Lyp)} =108 (Cpip-1) +108 (Cppimip-1)
“L(w+p+m- 1)log|By(s)| + logf{ (an + 1)}

$1) o (B) 108 [ (s 1)

1=1
(Lg + 1) log (Bq(f’ébl)) +logl {% (mx Ly, +1)} (5.13)
—5(mx Ly, +1) log( (Uzrp)) —log (A:) —log (Bq(ag))

tHq(1/02)Hq(1/ac) ~ log (Ag) - log (Bq(agbl)) tH (1/0 )Mq(l/agbl)

wh—t

=

wh—t

- IOg (Agrp) - log ( (ag‘rp)) + M‘I(l/agrp)uq(l/agrp) Z log (AEJ)
eplogT {2 (v+p)} - (v+p-1) Zlog(Bq@z,»)
j=1 '

p
2 v (M), Fatajas,)

where p = 2 is the number of columns in the X matrix, which also corresponds to the

dimension of X.

5.2.4 Streamlining Mean field variational Bayes for the two-level Gaus-

sian response model

The naive nature of the implementation given by Algorithm 5, stems from the fact that the
update for the covariance matrix 3,3, requires storing and inverting a matrix which
has its row length equal to that of the C' matrix and thus can become infeasible for
large multilevel/longitudinal datasets. Lee & Wand (2015) develop a streamlined MFVB
algorithm for efficient fitting and inference in large longitudinal and multilevel data sets. In
particular they develop streamlined MFVB algorithms for the two-level Gaussian response
model and the two-level binary response model. We focus on the former algorithm and
slightly adjust their Algorithm 2 to cater to (5.8).

In keeping with the notation used in Lee & Wand (2015) we further partition the
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following vectors and matrices:

[ gbl
Y1 X z
y=| |, X=| |, 2= : [, and Z" =blockdiag (Z}),
1<i<m
gbl ==
| YUm Xm Zy,
where
[, 1 x; 22T ) ZEPT
Yi1 il il i1 Zil
yi=| + |, Xi=|: : |, Z®=| : [, and Z}=
. i gbl T T grpT
L ylni 1 $lni in; in; “ing;

In addition, we partition the following global and random effects:

ugbl
u=| |, and Z=[Z*" Z"],
u

7

Lee & Wand (2015) suggest the useful notation C*' = [X Z*"] where C¥"' = [ X; Z5"] is

where u® = [(u{")T...(ufj’l)T]T, u = [(51T (ugrp)T]T and u®" is defined in (5.3). Finally,

the sub-matrix of C*"' corresponding to the ith subject. With the aid of this new notation,
a streamlined version of Algorithm 5 is presented in Algorithm 6.

Convergence of Algorithm 6 is determined using the marginal log-likelihood lower
bound:

m
logp(y;q) = 5p(v +p—1)log(2v) - § Y nilog(2m) - 4log(m) - §log(o3)
=1

=57 Ul o) 17 10 (B(9))} + 3 (0 + L + m(p + L))
- T .
_% ZZ;]og ‘,uq(l/gg) (Z?) Z? + blockdlag (Mq(E’l)’Mq(l/UQ )ILgrp) ‘

grp

_% log ‘Eq(ﬁ7ugbl)| —log (Cprip-1) +10g (Cpyamsp-1)
+logf{% (Z n; + 1)} - % (Z n; + 1) log (Bq(gg)) +logD (% (Lgn +1))

i=1 i=1
_% (Lg +1)log (Bq(‘fébl)) +logD’ {% (mx Ly, +1)} +plogD (% (v+p))
~3 MLy + 1)log (B, (2 1) ~ 108 (A2) =108 (By(a,)) + Ha(1/o2)Ha(1fax)
~log (A1) - log (BQ(agbl)) + Mq(l/agbl)uq(l/agbl) ~log (Ayyp) —log (Bq(agrp))

grp

p 14
Hly(1/02,) Pa(1/02,) ~ ;10% (As) -5 (w+p- 1>j§1°g (Byas.))

p
" Z1V (Mq(E‘l))jj Pq(1/as;) ~ 3 (v +p+m—1)log|Bys)|-
iz
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Set up initial values:

Mq(l/o‘%) > 07 Hg(1/ae) > 07 :u'q(l/o'ébl) > 07 /’Lq(l/ogrp) > 07 lu’q(l/ag’j) > 07 1 S] < 27 Mq(zfl)
positive definite.

Cycle through:
S<0;, s<0
For:=1,...,m:
Gi < g2 (C) 27

-1
Hi - {Mq(l/ag) (Z?)T Z? + blOdelag (MQ(E_I)’M‘](l/UgrD)ILgrP)}
S« S+GH,G]; s+ s+GH;(Z vy,

gbl\ T vgbl 05212 0 1
BBty < {Ha(1/o2) (C) C 4] g ‘uq(l/a?bl)ILgbl -5
g

Ba(gust) < Ho(1/o2)Dqaust) {(C*) "y = s}
Fori=1,...,m:
Eq(u%{) <« Hi + Hi GZ Eq(ﬂ’ugbl) Gl Hi

H'q(”?) < H; {/’LQ(l/Ug) (Z?)T Y, - GZT l*l/q(/@’ugbl)}

1 ' 21 ()
Byo2) < Bq(i/ac) + 5 | ||¥ = CF By(uspt) 5
m Mq(uR)

+tr {(C*")" C*' B (501 | +;tr{(zw 2} S ()|

_2%(11/03);‘51" (GiHiG;rEq(B7ugbl)):|
E;n +1)/Bq(03); Hai/as) < Y Akgq o2y + A2}

]

Fa(1)o2) < 3 (

Bq(aébl) <« % {|| Fg(usbl) ||2 +tr (Eq(ugbl))} + Hg(1/age)

I <5 Lg+1)/B [ ‘—1/{M +A‘2}
q(l/aébl) 2378 q(agbl)’ a(1/agn) q(1/a§bl) gbl

By(oz,) < 3 {1l Baquerey II? 62 (Sqques) ) } + o(1/age)

1 . 2
Ha(1)o2,) < 2 (M Law + 1) [Byg2 )i Ha(fagy) < 1/ {Mq(l/ggm) + Agrp},
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By < 21 {#qwi)%(ai) + Eqwi)} +2vdiag (#q(l/az,l)» M(I(l/azz))
Mq(zq) <~ (v+m+1) Bq_(lz)
For j=1,2:

9 v
i + 1/A2,j7 'uq(l/aE,j) < (5 + 1) /Bq(aij)

Bytas) =¥ (My(zn)
until the increase in log {B(y; q)} is negligible.

Fori=1,...,m:

Aq(ﬁ, ugbl, u;‘) = Eq [{[ ulgbl ] - :“q(ﬁ,ugbl)} {u? - [,Lq(’u,lR)}T:I <« _2q(13’ugbl) Gi Hi

Algorithm 6: Streamlined MFVB algorithm for the two-level Gaussian response model
given in (5.8).

The difference between this lower bound expression and the one given in (5.2.3) is replace-

ment of the term

log Xy (5,u)

- 10g|2q(ﬁ7ugbl)|,

with - ; log |,uq(1/gg) (Z?)T Z,l;” + blockdiag (Mq(Z’l)’luq(l/crgrp)ILgrp)

which is used to streamline the calculation of log|¥,(g 4| Details on this calculation are
given in the appendix of Lee & Wand (2015).

In order to produce variability estimates when plotting subject-specific mean estimates,
Lee & Wand (2015) propose the following partition of the g-density covariance matrix of

the vector of coefficients for the ith subject:

B
gbl _ Zq(ﬁvugbl) Aq(x& us, u?)

Coval | =7 Ay Bt )T w

g(uft

It is important to keep in mind that the time savings when using a streamlined MFVB
approach for the Bayesian hierarchical two-level Gaussian response model given in (5.19)
will not be as impressive as the ones achieved by using the two-level model in Lee & Wand
(2015). The reason for this lies in the structure of the H; matrix. For example, in Lee
& Wand (2015) there exists no zero’s in H;, however in (5.19), since we incorporate the

variance of the spline components for the group specific curve of each individual there exists
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blocks of zeros concerning the p /Ugrp)I Lgrp term in Algorithm 6. As a result, this should
not be considered a fully streamlined version of Algorithm 5 and further investigation into

a more robust version of Algorithm 6 is certainly warranted.

5.2.5 Simulation study

We carried out an extensive simulation study in order to assess the speed of Algorithm
6 against that of Algorithm 5. We generated 25 data-sets according to (5.1) where the
;; "~ Uniform(0, 1), w8 " N(0, 02, Eij " N(0,02), §; "~ N(0, X) and the uf® "~

N(0, 62 ). The true parameter values were specified as

0.4 0.1
By=02, B1=18, o2, ,=15 02=005 X-= and o2 =0.29.
gbl 3

The number of subjects between simulation studies was varied, where m € {25,75,125, 175}
and the within subject sample size remained constant at n; = 10, 1 <i < m.

Algorithm 5 and 6 were implemented in the R programming language. These computa-
tions were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes of
random access memory). Table 5.1 summarises the computation times for each approach.
As the number of subjects m increase moderately, the average computing time for the
nalve approach increases very quickly. The average time increase for the naive approach
from m = 25 to m = 175 is approximately 3 hours, compared to the streamlined approach
which was just under 1 minute. This is represented in the Ratio column of Table 5.1
where we can see exactly how much faster the streamlined approach is in comparison to
the naive approach. Keeping in mind that the largest value of m is 175, the possibilities

of time saving given larger values of m seem endless.

m Nalve Streamlined  Ratio
25 37.16 (17.49) 9.52 (3.75) 3.86

75 761.16 (248.39)  20.44 (6.13)  37.24
125 317827 (562.68)  31.45 (5.22) 101.06
175 11181.61 (4587.89) 56.49 (22.36) 197.94

Table 5.1: Average (standard deviation) run time in seconds for naive and streamlined
MFVB fitting of the two-level Gaussian response model in (5.1).
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5.2.6 Application to data from a growth study

In this section we provide an example of streamlined MFVB fitting for growth data on
children in Indianapolis (source: Pratt et al., 1989). These data possess a two-level struc-
ture where the repeated measurements on height and age are at the first level, and the
persons being measured are at the second level. In this data-set a person is identified as
being either black or white by the use of the indicator variable black. We only use the
information from this data-set relating to male individuals. This gives m = 116, and each
n; takes on a value between 10 and 26 repeated measurements each. The variables and

their description are given in Table 5.2.

Variable Description

id person identifier

height  person’s height in centimeters
age person’s age

black indicator of person being black

Table 5.2: Description of the Indiana growth data for male subjects.

We are interested in what the effect of being either black or white would have on a person’s
height. Thus an interaction term would be necessary in our model to account for this.

The Indiana growth data is divided into two groups:
A = white males B = black males,

and to quantify the difference between the two groups we extend (5.2) to:

Lgbl
fa(age) = fig + 01 age + ), uly %" (age),
/=1 o
e
fp(age) = By + 65" + (67 + 67"*) age + ) uf’, 2" (age), (5.14)
=1
[,&rP

grp

and g;(age) = do; + 01, age + Z uf) zfrp(age).
/=1

This allows one to estimate the contrast function given in (5.16). We define the parameter

vectors to be

58 gbl
u
By .
= = gbl
B - IB(])BVSA ’ u= uB
R
BvsA u

1
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where
% ug)
'u,ibl = : , ug’l = :
uitlegbl ug;ngbl

In addition, the design matrices X and Z are

1 age, I 01 I} oage
X=|: : s . Z=[zZV'| Z%'| Z2],
1 age,, I, 01 I, ©age,,

where
It 025" (age;) ... It © szbglbl (age;)
zy' = : : :
I} @25 (age,,) ... I, 0 zibglbl (age,,)
and

A { 1 if (age;;, height,;) is of type A,

9700 if (age,;, height,;) is of type B.
The n; x 1 vector I} consists of the Ifj and the design matrix Z%" is defined in a similar

way to Z%” but with I replaced by 1 - I. The full Bayesian model is then

height|B, u, 02 ~ N(X B+ Zu, 02I), B~N(0,031,),

(U§b1)2 0 ) 0
ul (UgAbl)Q’ (Jngl)Q’ %, Ugrp ~N10, 0 (ngl) ) 0 9 ;
0 0 bl(i(szic};ag (2,02 I1,..)

K N (5.15)
0. ~ Half-Cauchy (4.), o2, ~ Half-Cauchy (A4%)),

of, ~ Half-Cauchy (A%)), o0, ~ Half-Cauchy (4

~ )
gbl grp ) *

Y |as 1, as2 ~ Inverse-Wishart (v +2 - 1, 2vdiag (1/as 1, 1/as2)),

as,j ~ Inverse-Gamma (1, 1/A%’j), 1<j<2.

We use an equivalent set-up and partition of the mixed model framework as shown in
Sections 5.2.1 and 5.2.4. Model (5.15) was fit using the streamlined MFVB algorithm as
shown in Algorithm 6, where the variables height and age were standardised to have zero
mean and unit variance and the values of the hyperparameters were all set to 10°. The
rstan package which uses Stan code, was used for performing MCMC with a burn-in of
5000, number of further iterations of 5000 and a thinning factor of 5. The MFVB iterations
were terminated when the increase in the corresponding logp (height; q) fell below 1078,

As mentioned in Chapter 2, making time comparisons fair between MFVB and MCMC

is quite difficult, due to convergence for each approximation method being vastly different.
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Figure 5.3: Approzimate posterior density functions obtained via MCMC' and streamlined
MFEVB for the growth Indiana data set. MFVB accuracy scores are displayed.

Here we make use of Stan as opposed to BUGS, which we have been using until now. Stan
is known to generally converge faster than BUGS as it is based on Hamiltonian Monte
Carlo sampling. Stan is also preferred for certain problems with a complex structure, such
as multilevel models.

Figure 5.3 illustrates the accuracy of the streamlined MFVB approach against the
MCMC benchmark. The parameters being monitored are the quartiles of the curve esti-
mates of the 94th and 109th individual. These are represented as f4(Q;) + go4(Q;) and
fB(Qi)+g100(Q;) for i = 1,2, 3, where the 94th individual is white and the 109th individual
is black. The accuracy of the curve estimates for these parameters are reasonably high
considering the complexity of the model.

Figure 5.4 provides illustration of the approximate inference achieved by both stream-
lined MFVB and MCMC for the two-level Gaussian response model. It appears that the
subject-specific curve estimates and pointwise 95% credible sets are almost indistinguish-
able for both approaches, implying that the streamlined MFVB approach incurs little loss
of accuracy. It is immediately obvious that the streamlined MFVB fits are agreeing very
well with the longitudinal data for each individual. The MCMC fit took almost 3 hours,
whilst the streamlined MFVB fit took only 4 seconds.
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Figure 5.4: Group-specific estimates and pointwise 95% credible sets obtained via stream-
lined MFVB and MCMC for the Indiana growth data-set for male subjects.

Figure 5.5 illustrates the effect of the variable black on the height of male individuals.
This is given by the contrast curve

c(age) = fp(age) — fa(age)
(5.16)

gbl
gbl gbl

L
= BBA 4 BBvhage + z (u‘g} - uz,w) 2" (age).

=1

A contrast curve was generated for both MCMC and streamlined MFVB. It is evident
that at age 5, on average, black individuals are approximately 3.5cm taller than white
individuals. However, as they reach adolescence, black individuals are, on average, taller
by approximately 6cm. Finally, as males reach their early 20’s, the height differences

decrease to zero. In addition, the agreement of the curves produced by MCMC and
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Figure 5.5: Approzimate contrast curves obtained via MCMC and streamlined MFVB for
the mean height difference between black and white males.

streamlined MFVB are quite pleasing, indicating little loss of accuracy.
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5.3 Three-level Gaussian response model

In this section, we extend the methodology shown in the previous section to cater to the
three-level Gaussian response model for both the naive and streamlined MFVB situa-
tions. We apply this methodology to a data set which exhibits a three-level longitudinal
structure. These data represent frequency dependent backscatter coefficients for induced
tumors in rodents (source: Simpson, 2013). There are several slices or probe locations in
which each tumor is scanned. Five different transducers were used on various slices to

perform scanning. The variables and their descriptions are given in Table 5.3. Figure 5.6

Variable Description

freq frequency measurement

bsc backscatter coefficient (converted to decibel scale)
L9h4 indicator of transducer L.9-4 being used

L40 indicator of transducer L40 being used

MS200 indicator of transducer MS200 being used
MS400 indicator of transducer MS400 being used

Table 5.3: Description of the rodent tumor dataset.

illustrates the information from 10 rodents given in this dataset. Each panel represents a
different tumor corresponding to a rodent. The z-axis represents the frequency and the
y-axis represents the backscatter coefficients for each tumor. Each curve in each panel
corresponds to a different slice. Furthermore, within each panel, the colours correspond

to different transducers being used according to:

green L14-5
red L9-4
blue L40
MS200
purple MS400.

We use similar notation to that used in Section 5.2, where for example
bsc;j, = kth backscatter coefficient for the jth slice within the ith tumor.

The generic three-level Gaussian response model extension, specific to the data presented

in Figure 5.6 is

bscjr ~ N (f(freqijk) +gi(freq;;;) + hij(freq;;), 2),

) ) (5.17)
1<i<m, 1<j<n;, 1<Ek<ogy,
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WA
A 'é’&'&’ﬁn
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Figure 5.6: Rodent tumor data set showing frequency dependent backscatter coefficients
for two different types of induced tumors in rodents. FEach panel is for a different tumor
(name shown in top left corner). The type of tumor is shown in the bottom right corner
of each panel.

where we have m = 10 tumors, the n; range from being either 18, 19 or 20 slices (after

removing outlier slices) and the o;; = 128 is constant throughout and we use o from now

on to represent the measurements in each slice. The global mean function has the form
Lgb

f(x) = Bo + Bra + $219h4 + 3140 + 34,MS200 + 35MS400 + Y uf™ 5™ (x),
/=1
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where ugbl |02 bl N {0 ngl} In order to model the deviation from f for the ¢th tumor,

we further extend our model to include the function

Lgrpout 502 0
gz(x) 501 + 5]_155 + Z ugrpout grpout( ) m N(O Egrpout)
l=1 17
d.
U‘%rpout |O—§rpout m N(O Jgrpout)

where ‘grpout’ refers to each rodent’s information. In addition, to model the deviation

from g; for the ijth slice, we also make use of the function

Lgrpmn ryo . d
i 1] ind.
Z] (x) 701] + f)/l’bjx + Z ugrpmn Zgrpmn(x)7 ~ N(()) 2grpinn)y
=1 Y1ij

grpinn 2 1nd

uf |Ugrpi11n N(O Ugrplnn)

where ‘grpinn’ refers to the information involving the measurements for each slice. In order
to express our model in a mixed model framework, we first define the following vectors

and matrices:

Y11
grpinn
Uyq
Bo - 1
,3 51 Y1ina
ﬁl uglbl u%rpout u:gll;i)lmn
2
— gbl — . grpout — . grpinn —
B= 3 , U= : y Ugq = : T TR : )
3
gbl
3 U bl Om TYm1
4 .
grpout grpinn
Bs S Hm1
Ymnm
grpinn
umnm J
ugbl
- grpout
u = ufull Y
grpinn
Usan
. . T
where the 6; and ugrpo‘“ are defined as in section 5.2.1. We define Yij = [0i; 71ij] and
< T . .
u’f;.p‘““ = [uglrp‘““, e irg‘;‘;in] . The design matrices X and Z are

1 freq, L9h4; L40; MS200; MS400
X=|: P : :
1 freq,, L9h4,, L40,, MS200,, MS400,,
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7= [Zgbl blockdiag ()(Z | Z?rpout) blockdiag (blockdiag ( ij |Zglp1nn)):| ’
1<ism Lsism s
where
gbl(freql) ... Lgbl (freql)
Z&M = : ’
gbl(freqm) Ce EZLl(freqm)
) S e
Zgrpout = . .
: )
| st (treqy,) oo 57 (treg,,)
[ (reqy) ... 200 (Freqy)
Zzgfpinn = : :
J ' |
grp‘““(fre%jo) Zirgl[r);r;:n(freqijo)

with freq; being the n;0 x 1 vector containing the freq,;;, and X; is the subset of X

corresponding to the ¢th tumor. We can now represent our model using the mixed model

framework:
y=XB+Zu+e, (5.18)
G = Cov(u) =
O'gblI Ly 0 0
0 blOdelag (Egrpout ) O-grpoutILgrpout) 0
1<ism
0 0 blockdlag (zgrpinn ) O-zrpinnILgrpinn)

1S_]’SZ:L(21 ng
5.3.1 Bayesian three-level Gaussian response model

Much like in the two-level case, fitting (5.18) using standard mixed model software such
as lme () in R is possible, but extremely time intensive. We opt to work with a Bayesian
version of (5.18) which allows direct implementation in standard Bayesian software. We
enforce oz, 01, gpouts Tarpouts Dgrpinn M Tgrpinn t0 possess half-t prior distributions on
(-1,1), as suggested by Huang et al. (2013). The standard deviation parameter priors are

achieved through auxiliary variable constructions as exhibited in Result 1.4.6. The full
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Bayesian three-level Gaussian response model for the rodent tumor data is:

y|B,u, 0l ~N(XB+Zu,02I), B~N(0,05Is), ulG~N(0,G),

o?|a. ~ Inverse-Gamma (3, 1/a:),  ac ~ Inverse-Gamma (3, 1/A%),
Ug2m | Gy ~ Inverse-Gamma (%, 1/ agbl) , Qg ~ Inverse-Gamma (%, Agfl) ,

3 ipout | 05 grpout, 15 OSgrpour,2 ~ Inverse-Wishart (Vgpoue +2 — 1,

2 VgTP dlag (1/a2grpout,17 ]‘/azgrpout72)) Y
o 1 2 .
Asyrpout,] Inverse—Gamma(Q, /A3, o, j), 1<5<2,
2

02 i | Qgrpous ~ Inverse-Gamma (3, 1/agpou ) , (5.19)

1 2
Qgrpout ~ INVerse-Gamma (5, 1 /Agrpom) ,
3 ipinn | 08 grpinn, 15 0 grpinn,2 ~ Iverse-Wishart (Vgpin, +2 - 1,

2 l/grpinn dlag (]‘/azgrpinrnl? l/azgrpinn72)) ?

A 1 2 ,
A5 rpinng ™ Inverse—Gammau(27 1/A2grpinn,j) , 1<j5<2,
2

grpinn

1
o | Ggrpinn ~ Inverse-Gamma (5, 1/ agrpinn) ,

1 2
Qgrpinn ~ Inverse-Gamma (5, 1/A% ),
where ac, Ggp1, Asyypours Tgrpouts A5, pinn and @i, are the auxiliary variables used for the
scale parameters in the model. Fitting (5.19) involves the setting of hyperparameters og,
A£7 Agbh Vgrpoum AZgrpout,17 AZgrpout,27 Agrpout7 Vgrpinna Azgrpinn717 Azgrpinnz a‘nd Agrpinn' TO

ensure that Property 4 of Huang et al. (2013) holds, we set v pou = V

g

pinn = 2. For the
remaining hyperparameters, non-informativity is achieved when their values are large, e.g.,

10°.

5.3.2 Mean field variational Bayes methodology

The essence of the MFVB approach for (5.19) is to approximate the joint posterior density

function with an approximate product density form

q(ﬁu U, a/é‘a agbl7 aZgrpoum agrpout? a’Egrpirmy agrpinn)
2 2 2 2
xq {087 Ugbl’ ngPOU“ UgrPOll“ Egrpim” Ugfpinﬂ} :

Using induced factorisation theory, it is shown that a further factorisation is of the form:

a(B,u) q(02) ¢ (02,)) 4(Berpous) 402 0ne) a(ac) q(ag)

2 2
x {Hq(a‘zgrpout 7j )} q(agrpout) {HQ(aZgrpinn :j )} q(agrpinn ) °
j=1 J=1

(5.20)

As mentioned in section 5.2.3 the optimal ¢-densities can be obtained through expressions

such as that given in (5.11). The full conditional distributions that we deal with all
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Figure 5.7: DAG corresponding to the Bayesian hierarchical three-level Gaussian response
model in (5.19).

have closed form expressions, resulting in our optimal g-densities possessing closed form

expressions. In light of this, the factors given in (5.20) have the following forms:
q*(ﬁa U) ~ N(l’l‘q(ﬂ,u)a 2q(ﬁ,u))
q*(02) ~ Inverse-Gamma (% (Z n; + 1) , Bq(gg))
i=1

q* (0%,) ~ Inverse-Gamma (%(Lgbl +1), Bq(ag ))

gbl

¢ (Zpout) ~ Inverse-Wishart (Vgrpout +m+1, Bq(Zgrpout))

q* (02 ,..) ~ Inverse-Gamma (%(m Lgpous +1), By Uﬁrpout))

n
¢ (Bgpinn) ~ Inverse-Wishart (v, pinn + Z ni+ 1, By, i) ), (5.21)
i=1

m
q* (02 ...) ~ Inverse-Gamma {% (Lg,rpinn > n; + 1) s By(o )} ,

-1 grpinn
q*(ac) ~ Inverse-Gamma(1, By(,.)),  q"(ag) ~ Inverse-Gamma(1l, By(a,,))

q* (grpont) ~ Inverse-Gammal(1, Bq(agrpout)),

*
0" (Agepinn) ~ Inverse-Gamma(1, By(a,, 1))
* N\ o . Vgrpout .
0" (Asyrpour,j) ~ Inverse-Gamma (=52 + 1, Bq(azgmout,j)) 1<5<2,

7" (Asypimn.g) ~ Inverse-Gamma( 2222 + 1, B ) 1<j<2.

q(azgrpinn »J )

132



5.3. THREE-LEVEL GAUSSIAN RESPONSE MODEL

The derivation of (5.21) is similar to that shown for the two-level model in Appendix 5.A
and the parameters in (5.21) are defined analogously to that described in Section 5.2.3.

The values of these optimal parameters are obtained through an iterative scheme presented

as Algorithm 7, where

M

9(G™) ©
#Q(l/agblz)ILgbl 0 0
0 blockdiag (M0 Hatt/o2 o T 0
° ° blockting (M, 5 ) e T
We define
P g(uzby = sub-vector of pg.,,) corresponding to u"
and 3 (ugby = sub-matrix of X, corresponding to u*".

The vectors Fog(usrpout)s Hq(s,)s Bg(usrpinnys Bg(,)) and their corresponding variance covari-
ance matrices are defined analogously. Algorithm 7 makes use of the variational lower

bound on the marginal log-likelihood. For model (5.19) and product restriction (5.20) it
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Set up initial values:
Hq(1/02)s ’uq(l/aé ) 'uq(l/ggrpout)’ Mq(l/agrplnn)a Hqg(1ac)s /Lq(l/agbl)a Hq(1/agrpout)?
‘uq(l/agrpinn) > 07 'u/Q(l/aEgrpout,j)’ MQ(l/aEgrpinn,j) > 0’ 1 < ‘7 < 2’ 2‘1(67“)’

) positive definite.

Mq(zgrpout) Mq(z !

grpinn
Cycle through:

Ho(Bu) < Ha(1/02) Zq(8u)C Y
21, 0 !
EBu) < (Mqa/a?)c C+ [ 0 Mg ])
Byo2) < 5 {1 ¥~ Chgpu I” +11 (CTCZy(gu))} + Ha(1/az)
Ha(1/o2) < 3 (021” + 1) [Buwry Butar) < batujor + A% baujan) < 1 Bygany
B 2 U gy I tr (B )} + (a0
a(1/02,) 27 a(02,)

-2
Bq(agbl) < /Lq{l/agbl} + (Agbl) 9 /‘Lq(l/agbl) <« 1/Bq(agb1)

Bq(o_2 ) <~ % {” [J;q(ugrpout) ||2 +tr (Eq(ugrpout))} + Mq(l/agrpout)
grpout
1
5(mL +1)/B
(I/Ugrpout) 2 (m grpout ) / (ggrpout)
-2
Bq(agrPOUt) q(l/agrpout) + AgrPOH“ MQ(l/agrpout) < l/Bq(agrpout)

m

B y(Sipon) < ; {'uq(tsi)l"’;(éi) + 2‘1(51)}

+2Vgrp0“tdiag ('uq(l/azgrpout,l)’ MQ(l/aZgrpout72))

M o(=: (Vgrpour +m + 1) B!

grpout) q(zgrpout)

For ] ) 1’ 2: B ( ) < ygrpout (M (Zgrlpout)) * 1/ Zgrpout,]

q azgrpout »J

grpout
q(l/azgrpout 7]) grpout .7

Bq(UZ ) < %{” uQ(ugrpinn) ||2 +r (E‘I(Ugrpi"n))} + NQ(l/agrpinn)

grpinn

) 3 Lom L +1)/B oo

q(1/0?
grplnn grplnn

-2 .
B‘I(agrpirm) (1/ 2 ) + Agrpinn’ uq(l/agrpinn) < 1/B‘I(agrpirm)

grpinn
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T

ary) m)}

diag My )oK )
g pinn
e q 1/a2grp1nn q(l/azgrpinn72)

m n;
q(zgrpinn) - Z Z {uq 71]

i=1j=1

Mq(E_l ) < ( Vgrpinn + Z i+ 1) B, (lzgrpinn)

grpinn i=1

For j=1,2: B(

q\ax

<~ Z/grpinn (Mq(z_l X ))]J + 1/ z3g;rp1nn:.]

grpinn

(521) .

until the increase in log {]_o(y; q)} is negligible.

grpinn 7j)

1%
q(l/azgrpinnv] ) Zorpinn» J

Algorithm 7: Naive MFVB algorithm for the estimation of the optimal parameters in
(5.21).

is shown that log {z_a(y; q)} has the following expression:

logp(y;q) =
%(Ugrpout + Qgrpout - 1) log(QVgrpout) + %(Vgrpinn + Qgrpinn - 1) log(2ygrpinn)
——OZnZ log(27) - 5log(m) — log(a%) -4 {|| Hq(3) | +tr (Eq(ﬁ))}

+5 10g |2q(ﬂ 'U,)| + log F {2 (Lgbl + 1)} log (CQgrpout7Vgrpout+Qgrpout_1)

+% {p + 2Lgrpout + m(Qgrpout + Lgrpout) + Zn’b (qgrpirm + Lgrpinn)} - log (Bq(agbl))
i=1

+ log (C(Igrpout7Vgrpout+m+Qgrpout*1) - log (C(Igrpinn7Vgrpinn+(Igrpinn71)

+ log (ngrpinnyl/grpinn"'zzzl M3+ qgrpinn — ) + log F { (Oznl + 1)} - log (Aa)

—% (ygwout + Ggrpout +m — 1) log |Bq(2grpout)| log( q(ae)) log (Agbl)

) m (5.22)
—5 | Verpinn + Qarpinn + an —1]log ]Bq grpmn)] Oan +1]log (Bq(ag))

=1 i=1

m

+logT {% (Lgrpinnzni + 1)} — 5 (Lgy +1)log (B (o 2b1)) — log (Agepinn)
— g

2 (ngrpout + 1) 10g< q( )) - ; ( grplnnznl + 1) log (B(I(Ugrpmn))

*Hg(1/o2)Ma(1/a:) + Ha(1/o, ) Pa(1fag) + 108T {2 (ngrpout +1)}

grpout

Qgrpinn
— log (Bq(agrpout)) + ’u'q(l/O'grpout)'U/q(l/agrpout) - Zl log (Azgrpinnvj)
Gdgrpout ~ 1
— log (Agrpout) - Z log (AEgrpout,j) + qgrpout log F {5 (Vgrpout + qgrpout)}
j=1

Qdgrpout

_% (Vgrpout + qgrpout - 1) Z log (Bq(azgrpoutﬁj )) + qgrpinn log F {% (Vgrpinn + qgrpinn)}
j=1
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q rpou
+ TP Ve (My2,,00) 5 a0 =108 (B

dgrpinn
1
_5 (Vgrpirm + qgrpinn - 1) Z;L 1Og (Bq(azgrpinn*j)) + /"Lq(l/o'érpinn)Mq(l/agrpinn)
]:
Ggrpinn
+ Zj:l Vgrpinn (*7\4'¢](§)’1 ))jj Nq(l/azgrpinn,j)'

grpinn

where p = 6 is the number of columns in the X matrix, gupon = 2 is the dimension of

Y erpout AN Gerpinn = 2 is the dimension of X, ;...

5.3.3 Streamlining mean field variational Bayes for the three-level Gaus-

sian response model

Here we extend the streamlined MFVB algorithm for the two-level Gaussian response
model as shown in Section 5.2.4 to cater to our three-level structured rodent tumor data.
Once again, in keeping with the notation in Lee & Wand (2015) we partition the following
vectors and matrices:

Z" =blockdiag (Z}'),

1<i<m

where

Zh = [Xi | £ | blockdiag (X Zf;"i““)] .

1<i<m

The global and random effects are partitioned according to:

ugbl
ws|" | Z=(27 27,

where

0;
grpout
7

R
Uy Vi1

— : R - grpinn
ut=|l |, u uf)

7ini
grpinn
| Yin,

With these partitions in mind, a streamlined version of Algorithm 7 is presented in Algo-
rithm 8. Successive values of the marginal log-likelihood lower bound are used to diagnose
convergence of Algorithm 8. These values are monitored using the expression in (5.22)

where

log |2 (5,u)l

136



5.3. THREE-LEVEL GAUSSIAN RESPONSE MODEL

Set up initial values:
Hq(1/02)s Mq(l/o§b1)7 ,qu(l/o-;rpout)v Mq(l/ogrpinn)’ Hq(1/ac)> Fq(1/agn)r Hq(1/agrpout)?
HQ(I/agrpi“n) > O’ M‘](l/azgrpout!j)7 ,uq(l/ailgrpinn!j) g 07 ! SJ : 27 Mq(zgrlpout)’

M y Positive definite.

«(Z g ipinn
Cycle through:
S<0; s<0
Fori=1,...,m:
Gi < g2 (C) 23

H; < [Mqa/ag) (z1)' Z?erlOdeiag{Mq(z‘l ) H(1/0? )ILgrpou“

grpout grpout

-1
Ini ® (Mq(zgrlpinn), M‘I(l/aérpinn)ILgrPinn)}]

> - (Cgbl)T CsM 4 O-BQIG 0 - S B
a(B,u®) Hq(1/02) 0 Mq(l/azbl)ILgbl

Hq(BuG) < Mq(l/ag)zq(,@,u(}) {(Cgbl)T Y- S}
Fori=1,...,m:

Eq( R) <« Hz‘ + HiG;Zq(ﬁqu)GiHi

u;

Bo(ury < Hillgjon (Z79) yi = Gl pypus) )

1 bl Z?u.q(ull‘)
By(o2) < Hg(1/a) T 3| |¥ = CF By(puc) ~ :
mMq(u)

—l—‘cl"{((}’gbl)T Cgblzq(ﬁ,u(})} + Ztr {(Z?)T Z?Eq(ufn)}
i=1

“2Uly1/02) ;“ (GiHGIZ g uc ))]

Hojo2) < 3 (01 ni +1) [Byozys Ho(ujaz) < 1/ {ttg(rjo2) + A2}
Bq(aébl) <« % {” Heg(ueb) ||2 +tr (Eq(ugbl))} + Mq(l/agbl)

Mq(l/agbl) < % (Lgbl + 1) /Bq(

U;bl)
-2
BQ(agbl) < Mq(l/agbl) + (Agbl) ! M‘I(l/agbl) < 1/BQ(‘1gb1)
1 2
By(oz,,) 2 Ul sgqusmmoney I+t (Sqqasmmony )} + a1 jagmon)
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(1/Ugrpout) (m Lgrpout - 1) /B (Ugrpout)
) + A”

2
grpout’? NQ(l/agrpout)

Bq(agrpout) (I/Ugrpout < ]./Bq(agrpout)

m

B (Sapon) < Z {qu (s + Zace, )}

+2Vgrp0mdlag (’uq(l/a‘zgrpout 1 ) ’ Mq(l/azgrpom ’2) )

M (520) « Wanow +m+ D) Byis
For j=1,2:
Bq(a‘zgrpoutvj) - Vgrpout (Mq(EéTIPOUt))J * 1/ Sgrpout J

Vgrpout
M(I(l/azgrpout,j) < ( 2 * 1) /BQ(aEgrpout,j)

Bq(02 ) <« % {” Mg (yerpinn) ”2 +tr (zq(ugrpinn))} + Mq(l/agrpinn)

grpinn

5 (omLgrplrm +1)/B (

Ugrplnl))

Hal1103,pimn)
<~ 1/B

Bq(agwinn) < Q(]'/Ugrplnn) " Ag””““’ Fq(1/agrpinn) 4(agrpinn)

ng

B y(Serpinn) © i 2 {“‘1 (1) Hafoy) * % (“’w)}

i=1j=1

diag ( w )
Vgrpinn q 1/ Egrplnﬂ q(l/azgrpinna)

m
M (2 1 ) < (Vgrpirm + E ni+ 1) B;(lzgrpinn)

grpinn i=1
For j=1,2:
B “— Vi M +1 A? :
grpmn
q(l/azgrpinn 7]) grplrm -7

until the increase in log {E(y; q)} is negligible.

Fori=1,...,m:

A (B, u® ul) = B, [{[ uﬁ,] ] - I.,l/q(IB7ugbl)} {uf‘ - uq(u?)}T]

<~ —2 ﬂVugbl) GrL H’L

q(

Algorithm 8: Streamlined MFVB algorithm for the three-level Gaussian response model
given in (5.19).
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is replaced by

_Z log ’Nq(l/ag) (Zf‘)T Z} + blockdiag {Mq(z—l), ,uq(l/az )ILgrpoun
i=1

grpout
I ® (Mq(Egrlpmn)’ MQ(l/Jgrpinl,)ILgrPinn)} | ~log X (g ust -
Once again, Algorithm 8 should not be considered a fully streamlined version of Algo-
rithm 7 because of the structure of H;. In addition to incorporating the variance struc-
ture of the spline components for each subject’s curve, there is also the variance struc-
ture associated with the slice specific curves. This is represented in H; as I $mn; ®
(M ‘I(Egrlpinn) s Hg(1 /Uérpinn)I Lgrpinn)' This block diagonal structure, comprising storage of a
large amount of zeros, is hindering the potential time savings that would be possible given

further research into this area.

5.3.3.1 Results

The three-level model given in (5.19) was fit using the streamlined MFVB algorithm as
shown in Algorithm 8. For fitting this data we set L, = 17, Ly pou = 12 and Ly, i, = 9 and
set all hyperparameters to 10°. The rstan package was used for performing MCMC with
a burn-in of 1000 and 1000 additional iterations. The MFVB iterations were terminated
when the increase in the corresponding log p (bsc; ¢) fell bellow 1078, The MCMC fit took
approximately 18 hours whilst the streamlined MFVB fit took just under 2 hours to run.
Figure 5.8 illustrates the accuracy of the streamlined MFVB approach against the MCMC
benchmark. The parameters being monitored are the quartiles of the curve estimates of the
1st rodent for three of its slice curves. These are represented as f(Q;) +¢1(Q;) + h11(Q:),
f(Qi) + 91(Qi) + h12(Q;) and f(Q;) + g1(Qs) + h13(Q;) for i = 1,2,3. The accuracy of
the curve estimates for these parameters are extremely high, especially considering the
complexity of the model.

Figures 5.9 and 5.10 provide illustration of the inference provided by the streamlined
MFVB approach and MCMC for the three-level Gaussian response model. Each of these
two figures represents a rodent with the interior panels corresponding to the slices or
probe locations in which each tumor was scanned. The streamlined MFVB fits are almost

indistinguishable from the MCMC fits for each slice.
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f(Q1)+Q1(Q1)+h11(Q1)

f(Q2) +91(Q2) + h11(Q2)

f(Qa) +91(Q3) + h11(Q3)

o
s -
~— MCMC
o 4 — MFRvB 96% 4 97% 24 98%
24 accuracy 2 accuracy S A accuracy
w | a v
o | o | < |
v 4 v
3 s
< =3 =
° T T T T T ° T T T T T ° T T T T T T
-39.4 -39.2 -39.0 -38.8 -38.6 -38.4 -38.2 -38.0 -37.8 -37.6 -38.0 -37.8 -37.6 -37.4 -37.2 =37.0
f(Qr) +91(Q1) +hi2(Qy) f(Qz) + 91(Q2) + 12(Qz) f(Qa) +91(Q3) + h12(Qs3)
v
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° o o
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v
= o | e |
] e
© i J
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Figure 5.8: Approzimate posterior density functions obtained via MCMC' and streamlined
MFVB for the quartiles of three specific slice curves from the rodent tumor data-set. MFVB
accuracy scores are displayed.

Figure 5.9: Slice-specific estimates and pointwise 95 % credible sets for a rodent given
in Figure 5.6. The different colours correspond to the different transducers. The thicker
curve estimates correspond to MCMC and the thinner ones correspond to streamlined
MFVB fitting. The data points for each slice are also plotted.
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Figure 5.10: Slice-specific estimates and pointwise 95 % credible sets for a rodent given
i Figure 5.6. The different colours correspond to the different transducers. The thicker
curve estimates correspond to MCMC and the thinner ones correspond to streamlined
MFVB fitting. The data points for each slice are also plotted.

5.3.4 Simulation study

An extensive simulation study was carried out to assess the speed of Algorithm 8 against

that of Algorithm 7. We generated 25 data-sets according to

Yijk = f(@igr) + gi(wijr) + hij(Tije) + €k, 1<i<m, 1<j<n;, 1<k<ojy,

ind. . ind. ind. ind.
where the ;5 ~ Uniform(0, 1), g5 ~ N(O,ag , u%bl ~ N(0, agbl), d; ~ N(0, Zyrpout),
grpout ind. 2 ind. grpinn ind. 2
ug? N N(O, 05 ou)s Vi~ N0, B ), and ugy™ "~ N(0, oy, ,,,,). The true parame-

ter values were specified as

0.40.1
/80 = 02, ﬁl = 18, O'g = 002, O-gbl = ]_5, Egrpout = !O 10 4] s O-:rpout = 029’

0.4 0.15
S = d o> . =0.17.
e [0.15 0.4] M Terpin

The number of subjects between simulation studies was varied, where m € {5,15,25,35},

the within subject curves remained constant at n; = 5, 1 < ¢ < m and the within curve
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sample size remained constant at o;; = 10, 1 <¢ <m, 1 < j <n;. The computations were
performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16 GBytes of random
access memory). The computation times for each approach are summarised in Table 5.4.

The time savings here will not be as impressive as the time savings given in Table 5.1,

m Naive Streamlined Ratio
5 28.49 (3.98) 4.34 (0.15) 6.57

15 617.65 (11.37)  44.79 (L.77) 13.79
25 2638.30 (20.81) 177.42 (0.19) 14.87
35 7051.99 (22.47) 455.89 (2.06) 15.47

Table 5.4: Average (standard deviation) run time in seconds for naive and streamlined
MFVB fitting of the three-level Gaussian response model.

due to the storage issues contained in H;. However, we still notice that the streamlined
approach for the three-level Gaussian response model is significantly faster than the Naive

approach.

5.4 Discussion

The original aim of this chapter was to develop a fast deterministic approach to MCMC
to shorten estimation time for the two-level and three-level Gaussian response model.
The rodent tumor dataset that was introduced in Section 5.3 led to the consideration of a
possible streamlined approach to MFVB. Meanwhile, research was being conducted by Lee
& Wand (2015) that led to the fully streamlined MFVB algorithm for a similar two-level
Gaussian response model. This led to the incorporation of a variant of this streamlined
algorithm for this chapter. As is evident from the real datasets and simulation studies for
both the two-level and three-level Gaussian response models considered here, MFVB in
general has achieved faster inference, but a streamlined version of MFVB in particular has
achieved even faster inference with little loss in accuracy. The models considered in this
chapter are of reasonably high complexity and further research into a fully streamlined

algorithm for both models would indeed be beneficial.
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5.A. DERIVATION OF ALGORITHM 5

5.A Derivation of Algorithm 5

Expressions for 1,5, and g

Firstly, we define
2
UgblI Lgp 0

0  blockdiag (X, 02 I1,.)

1<i<m

G =

Next, we note that
p(B, ulrest) o p(y|B,u,02) p(ulos,, =, 0%.,) p(B)
o< exp {—% (y-XB-Zu)' ((7€2In)_1 (y-XpB- Zu)} X exp {—%uTG_lu}
<exp (=51 18 1).
B

We next combine the design matrices X and Z to form C = [X | Z]. Taking the logarithm

of both sides gives

log p(B3, ulrest)

T 2
1| B ogl, O
2 u 0o O

+const

where ‘const’ denotes terms not depending on the parameter vector (3,u). Then, taking

expectations with respect to all parameters except (3, u):

E,{logp(3,u|rest)} + const

8l (.. 2L, 0 8
%{[u] (C (uqu/az)fn)C*[aﬁo qu(Gl)D[u]

.
-2 [ 5:| C’ (Mq(1/ag)1n) y} + const

logq™ (B, u)
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where

| Hagoz )L Len 0
G = :
(G 0 blockdiag (M 1), fg(1/o2,) L L)

1<i<m

M

and
Mg(x) = Eq(x)-

Completing the square from above gives

(B
q ([ u]) ~ N(Hg(8u): Sq(B.u))

Ba(Bu) = Hq(1/02)Zq(8u)C 'Y, and

where

-1
o221 0
X = cc+| PP ])
a(Bu) = | Hq(1/02)
(" [ 0 Mg

where p = 2 is the column length in X.

Expressions for B2y and ,1/52)

The full conditional distribution for ‘752 is given by

20 2 2
p(oZlrest) o< p(y|B8,u,07) p(oZlac)
= 20| Pexp {1 (y- XB- Zu) (o2L,) " (y- XB- Zu)}

( 2\~3/2 2 .
O'a) exp{—(l/ag)/0€}+con5t

Taking the logarithm of both sides gives

1
202

n 3
logp(aZfrest) = ~7 log(02) - 5 | y = XB - Zu ||* = log(02) - (1/ac) o2 + const
= %(n +3) 10g(0'?) - (% |y-XB-Zu ||2 +1/a/5) /0’? + const

Taking expectations:

logq*(0?) = E, {logp(af|rest)} + const

%(n +3)log(c?) - (%Eq ly-XB-Zu|? +Mq(1/a€)) /o2 + const
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Using result 1.4.19 it follows that

logq*(02) = 3(n+3)log(02) = (3 {I ¥ = Crrg(guy I* +tr (CTCZy(gu))} + Ho(1/a.)) 192

+const
This is of the form of an Inverse-Gamma, distribution, therefore
*0 2 1
¢ (07) ~ Inverse-Gamma (i(n +1), Bq(gg)) ,

where
1 2
Byo2) = 5 Ul Yy~ Clrgegy I” +t1 (CTCZy(3)) } + Hg(1/ac)

and using Result 1.4.3, we get

Ha(1/02) = 5(n+ 1)/ By(o2)-

Expressions for By,.), and fi,(1/4.)

The full conditional distribution of a. is given by

plac | vest) o< p(olaz) plaz)
= (1) exp{~(1/a:) [0} x (a2) 3" exp {~(1/A2)/a.} + const

Next, taking the logarithm gives
logp(ac |rest) = —2log(a:) — (0;2 + A;Q) [ac + const

Taking expectations:

log ¢*(ac) = E,{logp(ac|rest)} + const

= —2log(as) - (,uq(l/gg) + AZ?) [a. + const

This is of the form of an Inverse-Gamma distribution, therefore
q* (az) ~ Inverse-Gamma (1, Bq(as)) ,

where
-2
By(as) = Hq(1/02) + As
and using Result 1.4.3, we get

Hg(1/az) = 1/By(az)-
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Expressions for Bq(débl)’ and Po1o2,)

The full conditional distribution of ¢ is attained through

p(Ugbl |rest) oc p(u| Ugbn 3, Ugrp)p(asbl | agbl)
1 _ 1
= |G| 2exp{-3u'G tu} (02,)2 Lexp {(1/ag,) [o%,} + const
Taking the logarithm of both sides gives

L
IOgP(UngreSt) = _%bl 10g(0'§b1) - %bg(ffgbl) - UZLbl | us™ |2 _(1/agb1)/U§bl + const
8

- —%(Lgbl +3) log(agbl) - {% | w2 +1/agbl} /O‘Zbl + const
Taking expectations with respect to all parameters but agbl, with the help of Result 1.4.17,

we get
log ¢* (Ugbl) = Eq {logp(agblhest)}

—5 (L +3)log(02,) = [5 {1l Brguenry I +tr (Sqquety) } + 11/agn) ] 1050

+const

Thus, we can represent the optimal g-density of Ugal as:
*7 2 1
q (oy,) ~ Inverse-Gamma ( 5 (Lo +1), Bq(ggbl)) ,

where
B (.= %{H Hg(usgb) I? +tr(2q(ugbl))} TR agn)
‘1( gbl)

and using Result 1.4.3, we get

-1
Mf](l/gébl) - Q(Lgbl - 1)/3‘1(‘7&1)'

Expressions for Bq(agbl) and Hq(1/agm)

The derivations for B a(agnn) and Hg(1)agy) aTC similar to that for By,2y and pg(1/52), re-

spectively. Without going into further detail, the optimal g-density for a,, satisfies
q" (ag) ~ Inverse-Gamma (1 B )
& ' Palagn) )

where

— -2
BQ(agbl) - 'U/‘I(l/o'ébl) + Agbl
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and

Ha(1/agn) ~ 1/B‘1(agbl)'
Expressions for B,s) and M 51,

The full conditional distribution for ¥ is given by:

p(Slrest) o< p(u|of,, B, 0f,) p(Elas,, asz)
= |G]_% exp (-3u’G 'u) |Z\_(V+p_2w
X exp [—%tr {2vdiag (1/as1,1/as2)} 2_1] + const
where p = 2 is the dimension of 3. Taking the logarithm of both sides, we get:
logp(X|rest) = ~2log|Z[ - 36" (I, ® )8 - % log 3|
—tr {21/ diag (1/as 1,1/as2) E_l} + const

where 6 = [4],..., (5;1]T. Further simplification results in

log p(Elrest) = =1 (v +m+4)log|X| - $tr [{X2) 6;6] +2vdiag (1/ax,1,1/ax2)} X7

+const.

Taking expectations:

log¢* (%)

E, {log p(X|rest)}
~2(v+m+4)log|¥| - 3 {[Z?& {y‘q(éi)“;(gi) + Eq(éi)}

+2v diag (fg(1/az 1)+ Ha(1fas.2) )| =} + const

Therefore, we can represent the optimal ¢-density of X as:
q* () ~ Inverse-Wishart (v +m + 1, Bq(z)) ,

where
m

By(s) = Zl {Batsy sy + Do | + 20 diag (g(1jas. ) Ha(1/as))

and using Results 1.4.7 and 1.4.8, we get

— -1
Mq(z—l) = Eq(z—l) = (7/+m+ ].).Bq(z)

Expressions for the Bq(az,j) and fy(1/ay )
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We start with

p(as,j|rest) o< p(Efas1,as2)plas,;)
. v+l . _
= |2vdiag (1/as1,1/as2)| 2 exp{—%tr(Qudlag(l/azJ,1/a272)2 1)}

1
X (az,j)_§_1 exp {-(1/As;) [as ;} + const

Taking the logarithm of both sides gives

logp(as ;|rest) = —”T” log(as, ;) - %log(a&j) -(1/As;) Jas,; - {V (271)”.} as.;

+const

o) (5, 45 o

Taking expectations gives

Eq{logp(as,;|rest)}

4 —
5= log(as,j) - {1/ (Mq(z—l))jj + Az?j} Jas, ;j + const

log ¢* (as ;)

Therefore,

¢ (asj) ~ Inverse—Gamma(% +1, Bq(anj)) ., j=1,2,
where

— -2
By(ax ;) =¥ (Mq(z_l))jj A5

and through the use of Result 1.4.3

Iu’q(l/agd-) = (% + 1) /Bq(az,j)'

Expressions for Bq(aérp) and 1,0, [020)

The derivations for Bq(agrp) and fi4(1 Jo2,,) are similar to that for Bq(aébl) and pg(; Jo2,)

respectively. Without going through further detail, the optimal g-density for Ug%p is shown
to be of the form:

q*(ggrp) ~ Inverse-Gamma (%(m L, +1), Bq(agrp)) ,

where

1 2
Bq(ogrp) ) {” Heq(usre) ” +tr(2‘Z(ugrp))} T H1 /age)
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and using Result 1.4.3, we get

Fq(1/02,,) = %(m L., + 1)/Bq(0§rp).

5.B Derivation of the marginal log-likelihood lower bound

The marginal log-likelihood lower bound expression given in (5.13) is:

logp(y;q) = $(v+p—1)log(2v) - 5 " n;log(2) — 4log(w) — §log(c3)
=1

ozl o) I +2 (Bg(m)) } + 5 108[Bg(8.0)

+% P+ Ly +m(p+ Lyy)} —10g (Cppip-1) +10g (Cppimsp-1)

m
—% (v+p+m-1)log|Bys)| +logF{% (Z;nz + 1)}
iz

-3 (Z”z‘ + 1) log (By(o2)) +logT' {3 (Lan + 1)}
i=1

_% (Lg + 1) log (Bq((72 )) +logT {% (mx Ly, + 1)}

gbl
~3 (mx Ly + 1)log (B, (2, 1) ~log (A-) ~log (By(a.))
p
Hig(1/02) Hq(1/az) ~ 108 (Bq(agrp)) + Z; v (Mq(E_l))jj Hg(1/as ;)
]:
—log (A,n) —log (BQ(agbl)) * 'uq(l/crgbl)NQ(l/agbl) ~log (Ayn)

P
tHe(1/02,,)Pa(1/02,,) ‘;bg (As;) +plogl {% (v+p)}

grp

P
_% (v+p-1) Z;l(’g (Bq(ax,j))
iz
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The details of the derivation are as follows:

logp (y;q) = Eq{logp(y,B,u,02,02,,5,02,, ac, 0y, @5, ayy)
~logq" (B, u,02,0%,, 8,00, az, Qg s, Gy )}
= E, {logp(y|ﬂ,u o )}
+E, {logp (ﬂ,u|o’gbl,2 O'grp) log ¢* (ﬁ,u)}
+E, {logp (U€2|a5)—logq (U )}
+Eq{10gp(0g2b1|agb1) log q” ( gbl)}
+E,{logp (Xlas1,as2) —logq* ()}
+Eq {logp (07, la.) ~log " (07,) |
Eq{logp(a:) —logq" (ac)} + Eq{logp (ag.) —logq* (azm)}
Eq{logp(as) —logq" (ax)} + Eq {logp (asy) —logq* (ag)} -

(5.23)

First note that
2 1w 1 = 1 2
1ng(y|ﬂ,u,0'5) =3 an log(zﬂ-) 9 anlog(a E ” Y- XB -Zu ||
i=1 i=1

Taking expectations we get

By {logp (ulB.w.o2)) = - Smlosem) - § Sy e}

5/“Lq(1/cr§)Eq (ly-XB-2Zu|?).
Next, using the concatenated form of the design matrices, C = [ X | Z] and Results 1.4.19
and 1.4.12, we see that

2
E,(ly-XB-2Zu|?) = E, y—Cﬁ
D
= y—CEq( p +tr{C’C0V(['B:|)CT}
’U;‘ u

Iy~ Chigguy I? +tr (CZy5u)CT)
= | y-Chygau I? +1(CTCEy5.4)) -

Substituting into (5.24), we have

nilog(2m) = § > ;B {log(0?)}
=1

E,{logp (y|B,u,02)} = -1

oz

~
Il
—_

~3hg(1/02) Ul ¥ = Chg(guy I* +t1 (CTCZg(au))} -
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5.B. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Moving on to the next term in (5.23), we see that

logp (B, ulo?,, 2,02 ) = —log(27) - log (03) - @ I 8%

_% {Lgbl + m(2 + Lgrp)} log(27r) gbl log ( gbl)

1 gbl [|2
u
Qaébl ” ”

—%tr(Zé 0, % ) ol K

_m ]Og|2| — —m X Lgrp IOg( grp) N

Next, note that the entropy of the multivariate normal random vector [,BT, uT]T is

—Eq{logq™ (B, u)}

% log {(27T6)2+Lgbl+m(2+Lgrp) |2q(ﬂ7u) |}

2+ Lgp1+m(2+Lgrp) 2+ Lgp1+m(2+Lgrp)
2 2 :

= %log 1 g8.u)| + log(27) +

Therefore,

E, {logp (B,ulo,, 2, 02,) ~logq* (B, u)}
= ~log(2m) ~log (05) = 557 {1l Hoea) II” +x (Zg(m) )}
=3 {Laa + m(2 + L) }log(2m) - 52 B, {log (02,)}
2 Eq {log B[} = § m Ly, Bq {log (02,)}
(1/(r ) Ul gy 17 0 (Bgguen )
"tf{ 1 (Hace i + Zae ) Mz )
=3 (1jo2,) Ul Bagusn) I +tr (Zqquse) ) |
+310g By (8w + 3(2+ Lgy + m(2+ Ly,) ) log(27)

+%(2 + Ly +m(2+ Ly,)).

Collecting like terms and removing cancellations, this equates to

= —log (aé) - % {” Hq(B) I +tr (Eq(ﬁ))} - (Ugbl)}
~ 2 Ey {log|E} - §m Ly, By {log (02,)}
Hy (102, ) Ul Pty I 6 (Zgqaumn) )}
-l“{ml (Ba@ots) * Zae) Mys)}
) {1 gy 7+t (Sgcusr) )}
+= log IZBwl+3 (2 + Ly +m(2+ Ly,,)).

T2 /’Lq 1/Ugrp
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5.B. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Next,

logp(o?|ac) —logq*(0?) =

1og{“r/‘é)f (az)%lexp(-”ga)}

1
B2y 2 (Ziamit1) Lesmo 1) By,

~log qi B) _ (Ug) 5 (Zi2 nit) 1exp(— Q(QE))
T (3 (Zini+1)) o

£

Q

= —1log(ac) - 3log(0?) - (1/ac) [o? - Llog(m)

—% (inz + 1) log (Bq(ag)) + {% (Tzn;nl + 1) + 1}log(0§)

=
+By(o2) /02 +1og {T (5 Ty ni+1)}
Thus,
Ey{logp(oZ|ac) ~logq*(02)} = —5E4 {log(az)} + 5 X niEy {log(o?)}
~310g(7) + (By(o2) = Ha(1/a.)) Ha(1/o2)
+log {T' (5 £y i + 1)}
~5 (S ni + 1) 1og (By(s2)) -

The derivation for the term

E, {10gp(02b1 | agbl) ~logq” (Ugu)}

is similar to that for
E,{logp(a?|ac) —logq*(a2)}.

So, without going into further detail,

Eq {logp(agm | Clgbl) —log q*(O'gbl)} = _%Eq {IOg(agbl)} + %LgblEq {IOg(Ungl)}
1
-3 log(m) + (québo = Ha(1fag)) Ha(fog)
+log {T (5L +1)}
_% (Lgbl + 1) 10g (B‘I(Ugbl)) ’

We now move on to expanding the fifth term in (5.23):

log p(X|ax1,az2) —logq* () = —log(Ca,vs2-1) + “2-L log [2v diag (1/as 1, 1/ax2) |
—%l log |X] - %tr {2V diag (1/as1,1/as2) 2_1}
+10g(C2 yams1) — ”J’%ﬂ log | B y(s| + M% log |X|

+5tr { By =71}

152
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Therefore,

Ey{logp(X|as,as2) -logg*(X)} =
—log(Ca,,4+1) +10g(C2, pem+1)
+”T+1Eq {log |2vdiag (1/asx1, 1/as2) |}
—”%” log | Byl + %5 Eq {log |2}
+3tr{(Bum) ~ 20 divg (g5 )0 M) ) Moz

The derivation for the term

E, {logjto(agrp |Ggp) — log q*(agrp)}

is similar to that for
E, {logp(o?|ac) ~logq*(c2)} .
Without going into further detail, it is shown that
Eq {Ing(Uggrp | a’grp) - log q* (O-grp)} = _%Eq {log(agrp)} + %ngrPEq {log(o-ngp)}

~1log(m) + (B(I(ogrp) - “tJ(l/agrp)) Ha(fog)
+log {F (%ngrp + 1)}

3 (m Ly, + 1) 10g (Byon, ) -

Next, we have

N|—=

(1/42)
()

log

2
logp(ac) ~log " (a) (a) 7" exp (U—A)

3

B B
_log 4 Zala) -1-1 _DPalac)
Og{ F(l) (aa) eXp (IE

-log(A:) - %log(ﬂ) - %log(ag) - (1/Ag) [ac —log (Bq(ae))

+2log(ac) + By(q.)/ae-
From algorithm 5, we see that
Byax) = Fa(jo2) + A2

so making use of this and taking expectations we get:

Eq{logp(ac) ~logq*(ac)} = ~log(Ac) - 5 log(m) + 5 B, {log(ac)} - log (By(a.))

*Hq(1/02)Pq(1/ac)
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5.B. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

The derivation of the following term in (5.23) is similar to that just shown above, thus we
have
Ey{logp(ag) —logq* (azm)} = —log(Aum) - %log(w) + %Eq {log(ag)} —log (Bq(agbl))
+:uq(1/azbl):uq(1/agb1)'
Next,

(1/42,)?

2
logp(as) —logq*(as) = log q ( ) (a 2,])7 16XP( E—

14

2 B, +1 By(as. ;
—lOg H q( Ejl ) (EJ)( ) Xp(— q( ',]))}

A T3

= - leog(Azj) log(7) +2log{F( + 1)} + 2(V+1) leog(azj)
J j

2 2 2
- 231 (1/‘4;]') /CLEJ + Z;BQ(GE,]')/CLEJ - (% + 1) Z:llog (B(I(az,j))'
j= j= Jj=

Using the fact that

BQ(az,j) :V(Mq(z 1)) +1/AEJ7

and taking expectations, we get

2
E, {logp(as) ~logq*(az)} = - -21 log (Ay ;) - log() +2log {T' (4 + 1)}

2
+3(w+1) Y. B, {log(as;)}

7=1
2

- (% + 1) leog (B(I(az,j))

j=

2
+ ZIV( o(x 1)) Hg(1fas, ;)"
£

The derivation for the last term in (5.23) is similar to the derivation for the a. parameter.

Thus, the expression is:

Eq {logp(agrp) - Iqu* (agrp)} = _log(Agrp) -3 lOg(ﬂ-) + lEq {log(a’grp)}
~108 (By(agep)) + Ha(1/02,) Ha(1fage)

Bringing all these terms together, and noting the cancellations:

~31ta1)oe2) {1 U= Ctigg.uy II? +t1 (CTC Zygu)) } = (By(o2) =~ Ha(1/a)) Ha(rjo2)s
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312, ) Ul Fgqusnny I+t (S ) } = (Buto,y) = Hatfag)) Hauje, -
—5tr {2?21 (qui)u;(,si) + Eq(éi)) M q(zfl)}
- %tr {(BQ(E) ~2vdiag (MQ(I/GEJ)’M‘](l/aE,Q))) MQ(ZA)} ’

2
~2ttg(1jon ) (Il Haqusemy 17 +tr (Zqusmy)} = (Batozy) = Hatfagen) ) Ha1/o2y)

and the fact that

"T“Eq {log |2vdiag (1/as1,1/as2)|} + "Tﬂ 2]2'=1 E,{log(as,;)} = ”TH log(2v),

gives the final lower bound expression in (5.13) where p = 2 is the column length in X.
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Chapter 6

Mean field variational Bayes for
mixture models 1n measurement

error problems

6.1 Introduction

In the area of epidemiology it is generally recognised that covariates, such as risk factors,
are not being measured accurately on all subjects. This can heavily affect the estimate
of the relationship between these covariates and the outcome. These are known as mea-
surement error or errors-in-variables problems. In this chapter we examine the Bayesian
formulation of such a problem, in particular fast mean field variational Bayes approxima-
tion and compare this to the MCMC benchmark. The field of epidemiology has lent great
motivation to this chapter, as measurement error has long been a problem there. The
model we present, inspired by the model used in Richardson et al. (2002), can be applied
in a variety of settings involving measurement error.

The main concern for problems with measurement error is to make inference on the
relationship between a response y and covariates x, in situations where the only other
information we have on « is through the recording of an error contaminated surrogate o,
as x may not have been measured accurately on all subjects. An attempt to regress y on
o whilst ignoring the problem of measurement error can in most cases lead to extremely
inaccurate inferential statistics. An extensive literature has formed for flexible estimation

of regression models where precise measurements on the predictor/s are not available. An
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extensive reference to the area is Carroll et al. (2006). The 2000s in particular saw an
influx of research into the area, e.g. Mallick et al. (2002), Liang et al. (2003), Carroll
et al. (2004), Ganguli et al. (2005) and Carroll et al. (2007). Many contributions have
discussed the use of MCMC based inference to fitting models impaired by measurement
error, however inference based on MCMC can at times be extremely time intensive. As
an alternative to MCMC, we focus on MFVB fitting to the model structure given in
Richardson et al. (2002) where the response follows a normal distribution.

Section 6.2 discusses the different components necessary for the measurement error
model with normal mixture components. In Section 6.3 we present the full measurement
error model that we deal with. We present the MF'VB algorithm in Section 6.4 and Section
6.5 provides a simulation study based on the new MFVB algorithm. The appendices
provide details on the calculations required for the MFVB algorithm and corresponding

lower bound expression.

6.2 Model structure

We set up the covariate of interest & by splitting it up into two subgroups: .., which
involves the accurate measurements of the covariate; and @, which involves the part of
the covariate that has not been measured accurately. The observations in x,,, are generally
recorded using a gold standard method, which is an error-free method for measuring the
covariate, however this is costly to use on a large scale, hence x,,.., is usually much
larger than x,,,. The subjects belonging to x,,, are usually referred to as the validation
group, and the subjects belonging to @,,..s as the main study. This is in keeping with the
terminology used in Richardson et al. (2002).

Throughout this chapter we let i refer to a particular individual, where 1 < i < n.
Also y denotes the known outcome (e.g. disease status), x the true covariate comprising
observed quantities x,,, and unobserved quantities @5, 0 the observed surrogate for x
and ¢ denotes a known covariate. We focus on the case where  and o are univariate. The

general model is divided into three submodels:

1. a regression model expressing the relationship between the covariates ¢ and x and

the outcome y, denoted by p(y|z, 3);

2. a measurement model, which expresses the relationship between the surrogate mea-
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sures o and the true unknown covariate @, denoted by p(o|x, a); and

3. the prior model for x, which specifies the distribution of the unknown covariate x

in the general population and is denoted by p(x|8),

where 3 is the regression coefficient vector for y, ¢ is the regression coefficient vector for

o and 0 are the parameters in the prior model for x.

6.2.1 Nondifferential measurement error

An important assumption for our model is one of nondifferential measurement error which
holds when o has no information about y other than what is given in « and ¢. Thus,
if 0 is conditionally independent of y given x and ¢, then it is a surrogate. This can be
expressed as

p(ylo, z, ¢, B) =p(y|x, ¢, B) or ylo|x.

This leads to the joint distribution

(6, 0.8, 0,) = p(8) p(cx) p(3) ﬁpmw) ﬁpwxi, o) ﬁp@im, ¢, B), (6.1)

where 0 denotes all the parameters of the normal mixture model and p(3), p(a) and p(0)

are the prior distributions for the parameters in the three submodels.

6.2.2 Finite normal mixture component

A question that has been heavily researched in the last decade is that of how to model
p(x|0) in such that we allow the data to influence its shape, since regression parameters
are known to be susceptible to the particular shape of p(x|0). Many contributions have
been made to this particular question in the measurement error context, some of which
are described in Carroll et al. (1993), Roeder et al. (1996), Schafer (2001), Aitkin & Rocci
(2002) and Miiller & Roeder (1997). Richardson et al. (2002) however, suggest mixture
models with alterable number of components as a natural alternative. In particular, mix-
tures of normal distributions, as they make model misspecification for p(x|@) increasingly
more robust. Thus, we also impose a mixture of normal distributions on p(x|@) of the

form:

K a®
p(xilad, -, a¥%) = H [(27m,%)_1/2 exp {—%(xl —uk)Q/az}] . ,
k=1

ind.

(afy, = afx)|(wi, -+, wi) "~ Multinomial(1; wy, -, wr), 1<i<n,

(6.2)
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where the a;; are auxiliary variables introduced to make the mixture model tractable and
K refers to the number of mixture components used. An example of this use of auxiliary
variables can be found in Section 2.2.4 of Ormerod & Wand (2010). The prior distributions
have the following forms:

ind.

e ~ N (,u#k, aﬁk) ., op "~ Half-Cauchy (Ar), 1<k<K, 63
6.3
(w1, -+, wg) ~ Dirichlet(a, -, ), >0,

where according to this notation, Zszl a3, = 1, indicating which mixture component the

current observation belongs to, and wy, = P(aj, = 1).

6.2.3 Joint model

Bringing the distributions in (6.1), (6.2) and (6.3) together and assuming natural condi-
tional independencies, our joint model for the measurement error problem is expressed
as

n n n K

H {p(yi|zi, ci, B)} H {p(oi|zi, )} [T TT{p(xi | air, pw. o)}

i=1 k=1
K

X ﬁ {p(aflv ) afk)}p(wl, -..,wK)IH {p(uk)p(ak)}p(ﬁ)p(a).

The model components discussed in the previous sections are brought together next to

present the full model, considered in a measurement error setting.
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6.3 The full model

We consider the model given in (6.4) which exploits the structure described in Section 6.2.

yi |z, B, 02" N{(X,B)i, 052}, o?la. ~ Inverse—Gamma(%, l/aa),

S

Tegression
Qe ~ Inverse—Gamma(%, 1/A§), J el
mode
B~N(0,031,),
oi|zi, e, 02 "W N{(X @), 02}, a~N(0,021,), measurement
error
o2 |a, ~ Inverse-Gamma (3, 1/a,), a, ~ Inverse-Gamma (5, 1/A2), model (6.4)
x FAY K N2\~ 1/2 1 x\2 a:2a“C
zilai, p*, (") =TT |{27 (o)} "“exp{~5(zi - pi)?/ (0})}|
k=1
a1, a;r ~ Multinomial (1; wy, -+, wg ), wi,,wk ~ Dirichlet (a, -, &), prior
pp ~N (u#, UZ), (J,‘f)2 laj, ~ Inverse—Gamma(%, l/ai), specification
ag ~ Inverse—Gamma(%, 1/(Ai)2) , 1<k<K,

where a is an n x K matrix of auxiliary variables and a; is the ¢th column of a with
entries a;1,...,a;x. In addition, pu* = (u7,...,p% ) and (67)% = {(af)2,...,(af()2}. We

also define

Bo 1ec o 12
(&7s) =,
B=|Be | afl ]7 X=:: |, X Do

a1
Bz 1le, xn 1z,

Here y = (y1,--,yn) is an n x 1 vector of response variables, 3 and a are the p x 1 and
g x 1 vectors of fixed effects, where p = 3 and ¢ = 2, X and X are corresponding design
matrices. Also, 03 and 03 are the variance parameters corresponding to the fixed effects
vector and a. and a, are the corresponding auxiliary variables as represented in Result
1.4.6. The variables in the prior specification of (6.4) are as described in Section 6.2.2.
We define the following additional notation which is useful for the remaining sections of
this chapter. Let n,,, denote the number of observed x; measurements and n,,,,s denote
the number of unobserved x; measurements. We define x,,, to be the n,, x 1 vector
containing the observed x; measurements and @,,.,s to be the n,,., x 1 vector containing
the unobserved x; measurements. In addition, let vy, .. and y, ... be the n,, x 1 and

Nunobs X 1 vVectors corresponding to the measurements in @, and X ,ops- Crobs; ANA Corunobs
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6.4. MEAN FIELD VARIATIONAL BAYES

Figure 6.1: DAG corresponding to the model in (6.4). The shaded nodes correspond to
observed data and the open nodes correspond to hidden or latent variables.

are defined similarly. It is easier to work with a re-ordered set of variables, that is

Yzob Czon Lo,
Y= Zobs ’ c obs ’ and = obs )
yl‘unobs Cgunobs L unobs

The conditional dependence structure of (6.4) can be visualised in the DAG given in

Figure 6.1. This DAG illustrates the relationship between the regression parameters and
the unobserved parameters in (6.4). Lastly, we note that the known covariate vector c¢ is

omitted from the DAG since it does not require inference.

6.4 Mean field variational Bayes

We provide detail on MFVB fitting catered to the Normal response regression model
setting with measurement error as described in model (6.4). The assumption behind

MFVB is that we impose a product restriction on the joint posterior distribution of our
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model parameters. For instance, we may impose the product factorisation

p{munobs’ Bv a? I“l’wa ama a7 w? Qey Qo, 0-62? 0-37 (0-:15)2 |y7 w0b57 O}
%q{wunobwlga a IJ‘m a‘m a w a67 aO? 2 2 (0.17)2} (65)

- q(munobw IB’ «, I’l’ a’ a w, Gg, a’O) q{ag? O- (o-w) }
Using the concept of moralisation (see Definition 1.8.9) we can further reduce the product

restriction in (6.5) to have the form

K n
(X unons) ¢(B) q(x) {HQ(Mf)Q(af)} {HQ(ailv-w,aiK)} q(wi,. .., wk)
- (6.6)

K
ated o) ae?) ato?) | [Ta{CoF )]
k=1
In Appendix 6.B, we show that the optimal g-densities for the parameters in (6.6) are:

q* (T ynons) is the N (“q(wunobs)7 aj(m bﬂ)Inumbs) density function,
q*(B) is the N (,uq(ﬁ), Eq(ﬁ)) density function,
q¢*(a) is the N (uq(a), pX (a)) density function,

2 . .
g (u®) = Hq(uk) is the product of N(uq( 2)> O q(ui)) density functions,
K

q*(a®) = []q(a}) is the product of Inverse- Gamma(l B a(as )) density functions,
k=1

q*(a) = Hq(aﬂ, ...,aix) is the product of Multinomial (1, Ha(an)s - - .,,uq(am))
density functions,

q¢*(w1,...,wk) is the Dirichlet (a aq(wK)) density function,

q(‘ul),...7

q¢*(a.) is the Inverse-Gamma (1, By(a. )) density function,
q* (ao) is the Inverse—Gamma( By(ao) ) density function,
q*(c?) is the Inverse-Gamma (5(n + 1), Bq(oz)) density function,

q*(0?) is the Inverse-Gamma (5(n + 1), Bq(az)) density function and

1
2
1
2
0

¢ {(@)} = {(c}),. .. (o

Inverse-Gamma (A{( z)2}, B{( z)z}) density functions.
T% Ik

} is the product of

The optimal parameters in these g-densities possess interdependencies between each other,
resulting in an iterative scheme for their solution. This is encompassed in Algorithm 9.

The lower bound on the marginal log-likelihood for model (6.4) is given by (the derivation
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of which is given in Appendix 6.C):

logp(y;q) =

~L (K +5)log(m) + 5 (p+ g+ K +Nyuors) — 5 log (Jé) + %log|2q(,@)|

K n

-log (A:) - % (2n + Topobs + ZMQ((IM)) log (27) + %log X g(a)]
k=1i=1

=57 Ukge)” + 1 (Zq@))} +log T {5 (n + 1)} - log (o)

—5 (n+1)10g (By(s2)) ~ 108 (By(a,)) + Ha(1/02)Hq(1/az) ~ 108 (Ao)
K

_ﬁ {H/’l’q(oc)”2 +tr (Eq(a))} - Z IOg (Ai) + log r {% (TL + 1)}
k=1

(6.7)
~51og (03) 5 (n+1)log (By(o2)) =108 (By(a,)) * Ha(1/03) Ha(1/a,)

) & 2 9 L& 2
erpelog (05, 0) < 77 20 oy =)+ i} 22,10 (73e0)

K . L&
+kzl log I'{3 (Hg(aw) + 1)} = 5,; (agay + 1) Tog (B‘I{(UZ)Q})

K n K K
+};Mq{1/(ai)2}/‘q(l/ai) - ; kz::l log (MQ(aik)) Fq(a) ~ log T’ (];aq(wk))
K K K K
+log F(Zak) - > logT'(ag) + > log (aq(wk)) - log (Bq(ai)) :
k=1 k=1 k=1 k=1

6.5 Simulation study

We conducted a simulation study for the measurement error model given in (6.4), where
each ith response measurement takes on a Normal distribution and we make use of a
normal mixture model with K = 2 mixture components for the prior model on x. The

true parameter values were specified as

Bo=-0.18, B.=044, B,=0.79, 02=0.2, ap=024, ar=083, o2=0.33,
w1 =025, wy=0.75, pP=-1.3, pf=125 (o¥)*=045 (0%)*=0.45,

and the proportion of observed z’s, p..., was varied using p.,, € {0.3,0.5,0.7,0.9}. We
generated 25 datasets for each of these settings. Algorithm 9 was implemented in the R
programming language and MCMC was used through the BUGS inference engine. These
computations were performed on a laptop computer (Mac OS X; 2.8 GHz processor, 16
GBytes of random access memory). Figure 6.2 shows MFVB accuracy summaries for
different types of p.,, values. The parameters that are monitored are o2, o2 and the

S
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Set up initial values:
Ha(1fo): Ha(Vfa)s Palam) Fy(1y(02)2) o) Tatupy” atend Ag((o2)) Ag((on)?) > O
Hq(1/02)+ H(1fac) > O-
Cycle through:
Update the expectations given in Appendix 6.A.

Regression model updates:

-1
1
28 < {Mqu/o—z) By (X X) + gfp}

:
HQ(B) < ’UQ(I/U;?) Eq(ﬁ) E‘](wunobs) (X) Yy
Byo2) < % (”ymobs = Xzobsllg() |+t (X;obstvobszq(ﬁ)) + 1Yt o 12

_2y;unobsEq(xunobs) (Xx‘mObS) HQ(B)

+tr [Eqmnobs) (X o X wuncne) (qu) + qu)ﬂ;(g))]) + Hq(1/ac)

Ba)o2) < 3 (0 +1) [Byo2yi  Bylar) < Ha()o2) * AZ% Ha(/ar) < 1/Bg(ar)

Measurement model updates:

Tga) © {Mg(l/oz) Ey(@anobs) (52 X ) +orl q}_l
Ha(a) < Ha(1/o2) Za(e) Eqtan) (X) 0
Byozy < 5 (10m = Xronettga | + 10 (X700 X zore D)) + [0 I
205, Bg@mons) (Xaumone) Ho(a)
[ By (X hunone X awnons) (Zata) * Moo Mgy ) ) + Hai/an)

o) < 3 (0 +1) [Byozys  Boan) < Haifo2) + 4075 Ha(1far) < 1/ By(as)

Prior specification updates:

2
o) < 1/ (%(1/0—3) [{(uq(@)?,} + (Zq(ﬁ))gs] + Tkt Ha(a) (1) (o7)?)

*Hq(1/02) [{(Nq<a>)2}2 * (Eq(a))zz])
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Ba@anon) < O mmn) (Ha(1/o2) [ (Ba(8) )y Yaumon
_1nun0bs {(Nq(ﬁ))]_ + (MQ(B)):{ + (Eq(:@))lf}}
~Caynons {(“q(ﬁ))z * (“4(,@))3 * (2‘1(@))23}

K
+1nunobs Zk:l MQ(a-k)MQ(“i)’uq(l/(Uz)2)

+tg(1/a2) [ (B0 Oz mone = Lunons { (Bae)y + (Ba(ey)s

+(2q(a))12}]])7

Fori=1,-nand k=1,---, K:
Vit < ¥ (g + 39 (Aq(<ag>2)) ~5log (Bq(<a:>2))
2
_%Mq(l/(o';g)Q) ([{EQ(munobs) (w)}z - ’uq(ﬂi)] + {ag(wunobs) (w)}l * Ug(ui))

Fori=1,nand k=1,---, K: Hg(a) < €XP (Vik)/Zszl exp (Vik)
Fork=1,--- K:

MQ(auk) < 21MQ(azk)7 0-2(//'?;) < 1/ {Mq(l/(gz)2)MQ(a-k) + 1/0—3}
Ha(u) < Tau) {“q(l/(ng)uq(a.k); {Bi@amone) ()}, + uu/ai}
Cglen) < Patow) 5 Ay (ay2) < 3 (Ha(am +1)

n 2
By((o7)?) 2o 25 ([{Eq(:cunobs) @)}, 4]+ {Oh ) @)}, f’?(uﬁ))
tlg(1/at)
Ho(1/(o2)?) Aq((a;g)Q)/Bq((a;)Q)? By(az) « Po(1/(op)?) * (A7)

Hg(1/az) < 1/ Byap)

-2

until the increase in log p(y; q) is negligible.

Algorithm 9: MFVB algorithm for obtaining the parameters in the optimal q densities for
the normal response measurement error model (6.4).
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6.5. SIMULATION STUDY
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Figure 6.2: Bozplots of parameter accuracies for MFVB in Algorithm 9 applied to the
measurement error model given in (6.4) for the simulation setting described in Section

6.5.
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Q;

unobs?

quartiles of the unobserved x’s. These are represented as z 1=1,2,3. We can see
from Figure 6.2 that the accuracies seem to be quite good for Ug and the quartiles of @ ,ops
for all values of p.., except for p... = 0.3. However, accuracies are very poor for ag when
Pobs = 0.3. Overall, the accuracies are looking good when p,., € {0.5,0.7,0.9}.

We also assessed the 95 % credible interval coverage achieved by the MFVB optimal
g-densities against the true parameter coverage for the same parameters. From Table 6.1

we see that the coverage probabilities are generally high for all parameters except O'g and

03. As p.s decreases, so do the coverage probabilities for 052 and 02. The run time for

Pors 0.9 0.7 0.5 0.3
o? 92 96 76 68
o2 92 88 84 72
Tz 96 84 96 84

unobs

92 96 92 100 100

unobs

9 92 96 100 92

unobs

Table 6.1: 95% credible interval coverage probabilities for the MFVB approzimation applied
to (6.4).

Pobs 0.9 0.7 0.5 0.3

MCMC  51.80 (0.61) 55.69 (0.51) 54.46 (1.70) 59.80 (0.67)
MFVB  1.46 (0.10)  1.46 (0.11)  1.42 (0.03)  1.41 (0.04)
Ratio  35.48 38.17 38.44 42.46

Table 6.2: Average (standard deviation) run time in seconds for MEVB and MCMC fitting
of the Gaussian response measurement error model.

MCMC and MFVB was also assessed. The resulting times are given in table 6.2. Based on
the timing results, we see that MFVB is approximately 40 times faster than MCMC. The
time savings afforded by MFVB in this instance is not of a large magnitude compared with
other models considered in this thesis, however extension to arbitrarily large and complex
models involving measurement error would more clearly represent the time benefits of
using MF'VB as an alternative to MCMC.

From Figure 6.3 we can see that the means of the MFVB fits are agreeing well to
the fits obtained via MCMC. More importantly, both of these fits are agreeing with the
true mean function even when p.., = 0.3. Thus, overall this simulation study has repre-

sented the effectiveness of using MFVB as an alternative to MCMC in models impaired
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Pobs = 0.9 Pobs = 0.7

Figure 6.3: Comparative plots of the MFVB and MCMC mean fitted functions with cor-
responding 95% credible sets for a single replication of the simulation study. The orange
data points represent the observed data and the blue data points represent the unobserved
data.
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by measurement error.

6.6 Discussion

We have derived a fast MFVB algorithm to a regression model with classical measurement
error. This approach was shown to have good accuracy with evidence of time saving
compared to the MCMC approach. Even though the time comparisons weren’t of high
magnitude for MFVB compared to MCMC, extension of such methodology to arbitrarily

large and complex models involving measurement error would exhibit larger time savings.
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6.A. EXPECTATION UPDATES

6.A Expectation updates

This section lists the updates in Algorithm 9 that involve the expectation operator with

respect t0 T nons:

mo S
EQ(wunobs)(m) < [ ’ ]’
#Q(wunobs)

2

2 2 n «
I+ 11 B unane) I+ 22 0 one)

E, x'x) < || Tops

(wunobs ) (

Eq(munobs)

- (1 =
(X) - obs ] ,
| 1 HQ(munobs)

n 1Tw0bs + 1Tuq(wunobs) ]

~T ~
q( ) ( ) | 1Tl’l’q(munobs) Eq(wunobs) (xTx)

Eq(wunobs) (XmunobS) < | 1 l’l’(munobs) ] ’

~T ~ [ Thunobs ]'Tu (m )
E X X - 4(Tunobs
Q(wuno s) Lunobs Lunobs 2 et g2 ’
b ( b ) | 1Tuq(iﬂunobs) ” Hq(wunobs) || +Z'7=1 ’ O-q(wlmobb‘)
[ 1 Czobs Lobs
Eq(munobs) (X) < ’
| ]— Ciﬂunobs U/q(munobs)
n 17c
E‘I(munobs) (XTX) - 1Tc CTC

T T T T
1 Lobs + 1 Uq(munobs) cxobsw'JbS + c$llnDbS’UJQ(wunobs)
T T
1 Lobs + 1 uq(munobs)

T T
C:L‘obstbS + Cxunobs“q(munobs) ?

E

Q(munobs) (.’BT:I:)

EQ(munobs) (Xmunobs) < [1 Cunobs uq(wunobs) :I’

T
Tunobs 1 Cgunobs

T T 2
Eq(munobs) (ngunobSX$unobs) <~ 1 Cl‘unobs || Cl‘unobs ||

T T
1 lj}q(munobs) cwun(’bs“(z(munobs)

T
1 HQ(wunobs)
T
Crunobs M q(xunobs)
2 Tunobs 2
|| HQ(munobS) || +Zi=1 Gq(munobs)
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6.B. DERIVATION OF ALGORITHM 9

Also,
0
2 — no S
O-Q(wunobs)(m) = [ 2 ’ ] ’

q(munobs ) Munobs

where 0, is the n., x 1 column vector with all entries equal to 0.
6.B Derivation of Algorithm 9

Expressions for p g and 3,

First note that
p(B | rest) o< p(y|B, z, o2) p(B)
= exp{—ﬁy -X3|%- QH,BHQ} + const,

where ‘const’ denotes all terms not depending on 3. Taking the logarithm of both sides

gives

logp(B | rest) o< —g53 |y~ XB I 5528
<~z (B'X'XB-28"X"y) - 57 |6J*

! {,5” (JLQXTX " 0%13) B-207 (%XTy)} + const.
1> B IS

Taking expectations with respect to all parameters except 3, we get

logq*(B) = Eq{logp(B | rest)} + const.
{87 (Ha01/o2) Eataanon) (X X) + j0315) B

=287 (114(1/02) Bo(@anon) (X) y) } + const.

Therefore,

q* (B) is the N (Mq(l@), Eq(ﬁ)) density function,

where

BaB) = Hq(1/02)Zq(8) Eq(@anons) (X)) ¥, and

-1
1
) = (Nq(l/a§> Eq(wumbs>(XTX)+U—gI3) :

Expressions for B2y and fi,(1/02)
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6.B. DERIVATION OF ALGORITHM 9

p(cZlest) o< p(y| B, x, 02) p(o? ] ac)

1
= |02, [ 2 exp {5k |y - X8I} (o2)

L1_
27! exp {—(l/ag)/ag} + const.

Taking the logarithm of both sides gives

~§1og(02) - 333 |y - X B1* -3 10g (02) - (1/ac) Jo?
+const.

~{3(n+1)+1}log(0?) - (3 Ily - X B |* +1/a.) fo? + const.

log p (o2|rest)

Taking expectations with respect to all parameters except 03, we get

logq*(0?) = E, {log g (o2 | rest)} + const.

—{3(n+1)+1}log(02) = (5Ely - X BI* + pyqija)) /02

+const.

Now, breaking F,|ly - X B|? up into the observed and unobserved parts, we get

Eq ”y - X 16H2 = Eq nyobs - X$0bs 16H2 + EqHyIunobs - XZ'UDObS ﬁ”2

Using Result 1.4.19,

E(I”y -X 18”2 = ”y:pobs - XCL"obs uq(ﬂ) H2 +1r (X;obsXIObszq(ﬁ))
+||ya;unobs - Eq(munobs) (X$unobS) /J’q(ﬁ) H2 +tr {COVq (X:l?unobsﬁ)}

where, using Result 1.4.20,

COVq (Xiljunobs ﬁ) = Eq {Covq (X:Bunobs B | munobs)} + COVq {Eq (X(Eunobs 16 | wunobs)}
= Eq {Xaf,‘unobscovq (6 ‘ munobs) X;unobs} + COVq {XxunobsEq (18 | Ccunobs)}

Taking into account the independence between ... and 3, as shown in product restric-

tion (6.6), this gives
COVq (Xxunobs B) = Eq {Xmunobscovq (B) X;unobs} + COVq {XJ,’unobsEq (B)}
= Eq (le‘unobszq(,@)X;unobs) + COVq (X:Eunobsl'l’q(,@))
= Eq (Xxu“()bszq(,B)X;unobs) + Eq (XIUHObSHq(ﬁ)u;(ﬁ)X;unobs)
T
- {Eq(wunobs) (X zunons) “q(ﬁ)} {Eq(munobs) (X zunons) “q(ﬁ)}
= By(wpnn) (X b Xaunoe) (Za(s) + ooyl s )

T

- {Eq(wunobs) (X.'L'unobs) Hq(ﬁ)} {EQ(wunobs) (Xxunobs) “’q(ﬁ)} .
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6.B. DERIVATION OF ALGORITHM 9

Therefore,

Eq”y - X B”Q = Hymobs - Xxobs l’l’q(,@) ”2 + tr (X;obsttobsEq(ﬁ))

I”

+Hyrunobs - 2y;unobsEq($unobs) (Xx“m)bs) HQ(B)

+tr [Eq(wumbs) (X Fuons X zunobs ) (Zq(ﬁ) * MI(ﬁ)“;(ﬁ))] '

And so,
q (‘752 ) follows an Inverse-Gamma (% (n+1), Bq(ag)) distribution,

where

Byo2y = 3Eq | y = X B 17 +1y01/a.)-

Expressions for By and jiy(1/4.)

We begin with
p(ae | rest) o< p(UE2 | ag) p(ae)
= (1/(15)1/2 exp {— (1/ae) /ag} (as)_%_1 exp {— (1/Ag/a5)} + const.
Taking the logarithm of both sides, gives
logp (ac | rest) = —3log(ac) - (1/ac) o2 - 3log (ac) - (1/AZ) Jac + const

~2log(a:) - (022 + AZ?) ac + const.

Taking expectations, we get

logq* (ac) = Eq{logp (a | rest)} + const

-2log(ae) - (Mq(l/gg) + Agz) Jac + const.
Therefore,

q* (ac) is the Inverse-Gamma (1, Bq(as)) density function,

where
-2
By(az) = My(1/02) + A

In addition, using Result 1.4.3,

Pq(1/ac) = 1/ By(a.)-
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6.B. DERIVATION OF ALGORITHM 9

Expressions for p ., . and o? 2(Tanobe)

We first note that
p(z|a, p, 0°) p(o]z, o, o?)

= €xp {_# ”ymunobs - Xl'UHDbSIBH2}

nﬁbg H[{QW or) }_1/2exp{_%(zi_“i)z/(azf}]aik

1=Nobs+1 k=1

Xexp {_ﬁ ” Ogunobs — Xxurxobsa ” 2} + const.

p(munobs | reSt) < p(y | ﬂ? m’ O-g)

Taking the logarithm of both sides gives

_# || yxunobs - 60 - 5ccl‘unobs - /meunobs ||2

log p (@unobs | TESE)

_ 2
Zk 1 Znunobs (5 ;LQk)
k

;.2 || Oz unobs — ) — A1 Lynobs ||2 +const

# (/82 || L unobs || +260/8Z‘ TNunobs L unobs — Q/B.Z’y;unobsa:unobs

+25Cﬂwclunobsx“n0bs) - % (” wUHObS ||2 Zkil U_g

T K arpe 1 2 2
-2 <1nunobsm““0b5) zk=1 a—]% ) - 20—2 (al || Lunobs ”
+2a 01 ln‘moquunobs 201 oxunobsmunobs) + const
1,.7 Bac a.k a%
_§munobs + Zk; 1 _]% + o-_g Lunobs
4, (55 ( B0 L = BeCaunone)
wunobs ya}unobs 0 Munobs cCxunobs
K aipk o
+1nunobs Zk‘ 1 0': + = (O:Eunobs - O[O 1nunobs)) + CODSt.
Taking expectations, we get
10g ¢* (Tunovs) = Eg {10g p (Tunons | rest) } + const
N N P oo - YR Gk of
- 2 munobs q a—g k=1 0.]% a-g L unobs
T B
_2munobs Eq (o'_g (yxunobs - ﬁolnunobs - /Bccxunobs)

a.kHk a1 _
+1nunobs Zk:l 0.]% + O'g (O.Z’unobs Qg 1n‘mobs ) )]

+const.

174



6.B. DERIVATION OF ALGORITHM 9

Therefore,

q" (Zynons) is the N ( Hg(@unons)? US(munobs)I nunobs) density function,

where , )

Ty = 1/ Ea (5_2 + Tk of ¥ %)
1/ [“q(l/ag) {“2(595) + (EQ(ﬁ))gg} + Zsz1 Fq(a r)Fq(1/02)
+Hq(1/02) {“3(0@ + (zq(a>)22}] , and

_ B
MQ(murxobs) - Eq (0._123 (yxunobs - ﬁﬂlnunobs - /BCCCCUHObS)

K arpe , a1 _
+1nunobs Zk::l O’i + o-g (OIUDObS aolnunobs)

Ug(mumbs) [“q(l/ag) [Mq(ﬁx)yﬂillnobs - 1nunobs (MQ(ﬁO)HQ(Bx) + (EQ(:@))13)
~Caunobs {q(8.)Pa(8) + (Za(8) )z ] + Ha(1/02) {Hg(ar) Ounons

K
Lo (Bg(ao)Ha(an) * (Za(@))12)} + Lunons Tica “q(a.w“q(uk)“q(l/oi)] ‘
Expressions for p ) and X q)
This derivation is similar to the derivation for p,(gy and X,(g), therefore

q¢" (a) is the N (uq(a), Eq(a)) density function,

where

]
Ho(a) = Pa(1/02) Zq(e) Ba(umas) (X) 0, and

- - -1
Zq(a) = (/J/q(l/ag)EQ(munobs) (XTX) + %12) :

Expressions for B2, fiq1/02)s Ba,) and fig(1/a,)

These derivations are similar to those given for By (,2y, fg(1/02): By(a.) and fig(1/4.) and so

we get the following updates:

q (02) is the Inverse-Gamma (% (n+1), Bq(gg)) density function,
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where
Bywz) = 7Ea{ll 0= X a7} + y1fa,)
= % [” Ogobs — X:Eobs l’l'q(a) ||2 +tr (Xmobs Z]q(o() X;Qbs)

+ || OCEunobs ||2 _2 OIunobs Eq(a:unobs) (XIunobs) Mq(a)
+tf{Eq(wunobs) (X snobe X wunon:) (Eq(a) + l"”l(a)“;(a))}] * Hy(1/02)-
In addition, using Result 1.4.3, we get
Ha(1/o2) = 3 (n+1) [By(oz).

Also,

q* (a,) is the Inverse-Gamma (1, Bq(ao)) density function,

where

Byas) = Ha(ijo) + 45" and

Ha(1/ao) = H/By(ao)-
: 2
Expressions for Hh(pu) and T(2)? 1<k<K

Keeping in mind that p® = (uf, ..., u% ), we begin with

p(p®lrest) o< p{zla, p”, (6%)°}p(u®)

: ﬁﬁ[{wm-m ol o)

Taking the logarithm of both sides gives

logp (pu* | rest)

K n 2_2:E.qu 1
32, D ik {()—k} = 5o () = 201§} + const
I

f=1i=1 (a,f)2

Aok 1 DOV GikTi Py
1E)? +— ¢ —2uf == _—_—+ 1.
' {(075)2 03} ' {Z (o7)° “H

1l

|
N[
1=
Py
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6.B. DERIVATION OF ALGORITHM 9

Taking expectations, we get
- 1
((Mk)2[ { 2}/‘q(a.k) ]
1y tatoi) Bty (@)}, + 2%
} 'U'Q(aik) q(wunobs) T i 0-2 ’
m

=1

K
Eq{log (plrest)} = -3 3
k=1

i

Therefore,

q* (p) is the product of N (Mq(ui)’ Ui(#z)) density functions
k
_ 2 S L]
Where Mq( I) - O’q(}uis) (Mq(l/(gz)z)zzzl’MQ(azk) {EQ(munobs) (w)}z + 02)7 and
2 _ 1
JQ(H‘;@) = 1/(%+'u’q(l/(ai)2)M‘I(a'k))’ 1<k<K.
i <k<
Expressions for A{(Ug)Q}’ B{(ag)Q} and ﬂq{1/(a,f)2}’ 1<k<K

To begin, we note that

p{(a%)?[rest} o p(zla, u®, o) p{(c”)*|a”}
= T Wagc?_l/Qex S 7 i
- i1y e[

Taking the logarithm of both sides gives

\2 1K o T2 ([L’i—,u,i)Q K3 T
logp{(c™)"|rest} = —51;112}% log {(c}) }+—( x)Q —kzﬁlog{(ak) }
=112= O'k; =

X 2
kz_: (1/ag) [ (o%)” + const

—_

{2 (aex +1) + 1} log {(07)?}

K n )
%Z( Z;(fﬁz‘#i) +1/ai)/(0f)+const.

MN

Ee
I
—_

Taking expectations:

K
2 {3 (Haauy + 1) + 1108 {(07)°}

E, [log{(a””)2 rest}] = —ki

[y

K n
_%kz_: (,uq(a.k)Z;Eq {(mz - /ﬁ,g)z} + :uq(l/ai)) /(0%) + const

[y
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where
z\2 2 2 2
Ey{(zi-pp)"} = {({Eq(wunobs) (@)}, - “q(ui)) * {Uq(w,mobs) (m)}z " Utl(#i)}'
Therefore,
q" {(0'35)2} is the product of Inverse—Gamma(Aq{(gz)}, Bq{(ag)}) density functions,

1 1
where A r(,)) = 2Hq(au) + 20
1 S z\2
Bq{(gz)} = Mq(l/ai) + 5;”‘1(‘”’9)Eq {(l’l - Mk) },1 < k' < K

In addition, using Result 1.4.3,

Bfusory?) = Aalon)/ Bat(op)y

Expressions for B,y and f,(;/40), 1Sk <K
This derivation is similar to the one for By(,2) and fig(1/52), and so this gives
q* (a3) is the product of Inverse—Gamma(l, B o a?ﬁ)) density functions,

where
-2

aa) = Pfy(ory?y * (AR)  and

Po(1/ap) = 1/Bq(ai), 1<Ek<K.

Expressions for ji,,) and vy, 1<i<n,1<k<K

Firstly, we note that

n
p(alrest) = Hp (a1, ... ,a;k|rest),
i=1

where each p(a;1,...,a;x|rest) has a Multinomial (1;w1,...,wk) distribution. Next, we

work with each ith component of this distribution.

p(ai,...,a;xrest) o p{m|a,ux,(ax)2} p(ait,...,aix|wi,. .., wk)
Ak
A R R\
) 1:[ {27T (Glf)2} P _l—x]; * 1:[ afk!
k=1 (oF) k=1
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Taking the logarithm of both sides gives

X 1 oy (@i ‘“%)2
logp (ai,...,a;xlrest) = ;aik (log (wi) - 5 log (27) + log{(a;ﬁ) } +— )

2
(ot)
+const.
Taking expectations, we get
K 1 2
Eq{logp (@i, ..., aiglrest)} = > ag (Eq {log (wk)} - 3 [log (27) + B, {log (o7)°}
k=1

(wi-p3)”
+Eq W + const.
Ok
Using Results 1.4.3 and 1.4.10, this gives

Eq,{logp(aii,...,a;k|rest)}

K K 1
= kglaik (1/) (aq(wk)) — w (/;1 aq(wk)) - 5 {log(27r) + log (Bq{(oz)Q})
(4 4p1)) * afiop?) (B @), {02 @),

-2 {Eq(fvunobs) ($)}2 Fog(uz) * Mi(ui) + Uz(uﬂ”))}) + const

k

K
= Zaik (Vi + const) + const
k=1

where const does not depend on k (e.g. const includes —% log(27) and —% (Zsz1 aq(wk))).
Note that the ‘proportional to’ sign o allows us to get rid of ‘const’ below.

K

g (a1, ...,aig) < H(GWHLW)GM
k=1

) a;
K exp”“f +const ik
S Bl Ry vl B

palie} 25—1 el/”ngconst

. _ 1 K 1 Qi _ 1 K o
since C = TE vt does not depend on £, and [];,_; (C) = 7 given that ;- a; = 1.

Hence the cancellation of const. Therefore,
q" (a1,...,a;k) is the Multinomial (1; Hq(ai)s - - - 7“q(am)) distribution,

where
exp”i

MQ(aik) =
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and

v = 6 () + 30 (o)) - 108 (B
——A { }({Eq(:cunobs) (x' m)} { g(wunobs) (m)}z

“2{ By(@anone) (@)} () * Hi ) * Us(ui)) / Bof(ory):

Expression for ag,), 1 <k< K
We begin with

p(wi,...,wklrest) o< p(wy,...,wk) X Hp(a,-l,...,aiK]wl,...,wK)

n K %k  T(vE
_ Hnwk o (Trey o) ()L

i1 k=1 Qik! I'(ou)

Taking the logarithm of both sides gives

n K
logp (w1, ... ,wkrest) = Z (aik log(wy) —log(a;x!)) + log (F(Zak))
i=1 k=
A5,
-> log (T'(ag)) + Z (ag — 1) log (wy) + const
k=1 k 1

M=

aix log (wk) + Z (ag —1)log (wg) + const.
=1 k=1

S.
T
i

Taking expectations, we get
n K K
Eq{logp (wi,...,wklrest)} = > > fg(a,) 108 (wi) + Y (o — 1) log (wy) -
i=1 k=1 k=1
Therefore,
q¢" (w1,...,wk) is the Dirichlet (aq(wl), e aq(wk)) density function,

where

Qg(wy) = Hg(ay) T Ok 1<E<K.
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

6.C Derivation of the marginal log-likelihood lower bound

The expression for the lower bound on the marginal log-likelihood given in (6.7) is

logp(y;q) =

—% (K +5)log(m) + % (p+q+ K +Nynons) — glog (U%) + %log 12q(3)| —log (A:)

K n
2 (2” s + 2 ;quik)) log (27) = g3 {[1t4(s) I* + 11 (i)} +log T' {5 (n + 1)}

=3 (n+ 1)1og (By(o2)) =108 (Byga.) ) + Ha(1/o2) Ha1fac) = 3108 (03) + 3108 [Zy(ar)
K
108 (A0) - gty {litgte | + 15 (Egge)} - 3 log (A7) + log T {1 (n 4 1))
k=1
—5log(0}) = 5 (n+ 1)log (By(ez)) ~108 (By(an)) + Ha(1/o2)La(1/a0)
Munobs 2 1 X, 2 2 1 K, 2
+7umbs Jog (Uq(%nobs)) - E}; {(Mq(ui) - :“u) + aq(%)} + 5}; log (Uq(u?f,))

K

K K
Z 0g T'{5 (Hgau) + 1)} - 5}; (Hq(am) +1)log (Bq{(ggg)g}) -2 log (Bq(ai))

K K
p Z 10g (Hq(an)) Ha(ay) —log T (kz:l%(ww)
K

+logF(Zak) Zlo (o) + Elogf‘( a(wn)) -

k=1

3

S —

Derivation: The lower bound on the marginal log-likelihood is achieved through the fol-

lowing expression:

logp (y:q) = Eq[logp{y,B,02,ac,0,,02, a0, 2, u*, (0%)* 0%, a,w}
—logq* {,B,as,ae,a, g,ao,munobs,pﬁ,(az)Q,ax,a,w}]
= By {logp(y|B, x,02)} + Eq {log p(ola, z,07) |
+Eq [logp{zasla, u”, (%) }] + Eq {log p(B) - log 4™ (8)}
+E, {logp(ag|a5) —log q*(ag)} + By {logp(a.) —logqg*(a:)}
+E, {logp(a) —logq*(a)} + E, {logp(og|ao) —logq* (Jg)}
+Eq {logp(ao) —logq*(ao)} + Eq {logp(p”) —log¢* (1*)}
+Eq [log p{@umorsla, 1%, (%)%} ~ 10g ¢* (Zunons) ]
+E, [Iogp{(a“")2 |a$} —log ¢* {(0'5‘)2}] + Ey{logp(a®) —logq*(a®)}
+E, {log ﬁp(ail, e G | W WE) —logﬁlq*(a“, . .,aiK)}
+E, {103;2197(001, wi) —logg” (wr, ... ,WK)}ZT
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

First we note that

log p(y|B, &, 0%) = ~§ log(27) ~ §log(0?) - 507 |y ~ X B>

Therefore,

E,{logp(y|B,x,02)} = -2 log(2) - 2 E4{log(02)} = S 1tg(1/02) Eqlly - X B

where
Egly =X BI? = [Yore = Xaors Bg(a)l* +tr (X 50 X woreZq())
H Y aunons | = 29z anone Ba(@umons) (Xzunons) H(s)
0| Byaone) (K b K awons) (Zao) + Moy )) |-
Similarly,

B, {logp(ola,z,02)} = -2 log(2r) - 1 E, {108(02)} - bttg(1jo2y Ealo ~ X x|

where
Eq”O - X a”2 = ||Oa:obs - Xa?obs p’q(a) H2 +tr (XmobsXIObSEq(a))
H0rumons|* = 207 ot B o) (X zunobs) Ha(a)
[ By (X D X aunone) (Za(a) + Mooy ooy ) |-

Next,

2
_%inob . 2 (:Ci_:ui)

a;i | log {271' (o%) } +

logp{@ola, u*, ()"} - (02)
k=1 i=1 o

k=1 1:1
K Nobs xl — T

I ( M2k)
k=1 i=1 (oF)

Taking expectations of both sides gives
K Nobs K
By [logp{@asla, u”, (67)?}] = 21 Z Ha(ay) 108(2) — %kzluq(a.k)Eq [log {(o%)*}]

K nobs

220 2 Hata) My (o)) B { (i = 1)}

k 1 4=1

where

Ey{ (i - 1)’} = {(x’ - “q(u?ﬁ))2 * U?(Mi)}'
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Moving on to the next expectation update, we have

logp(B) = ~5 log(2) - 5 log(03) - éllﬁ\\2
Taking the expectation of both sides gives:

E,{logp(B)}

—2log(2m) - glog(ag) - %Eq {":3“2}

~§log(2m) ~ §1og(03) ~ g2z () > + 1 (S} -

The entropy of ¢* (3) is

—E,{logq"(8)}

310g {(2me)" Sy ()}

= %10g|2q(ﬂ)| + glog(27r) + g

Therefore

Eq{logp(B) ~logq"(B)} = ~§log(cF) - ﬁ {liga) P +tr (Sqes)) } + 5108184 + 5

Next,

—3log(ac) ~logI (3) - 3log(a2) - (1/ac) [o?
= —%10g(a5) - %log(w) - %log(ag) - (1/ae) /‘752-

logp(o'g’aa)

Taking expectations, we get

E, {logp(c2|ac)} = —5E, {log(ac)} - 5log(m) - 3 B4 {log(02) } = tg(1/a. ) Ha(1/02)-
Also,
E, {logq*(af)} = % (n+1)log By(s2y — logT’ {% (n+ 1)} - {% (n+1)+ 1} log(o?)
~Baon)/oz-

Therefore,

Eq{logp(c?|ac) - logq*(02)} = -3 Eq{log(ac)} +log T {1 (n+1)} - log(r)
+(Bq(o2) = Ha(1/as)) Ha(1)o2) + 5 Eq {log(02)}
—%(’I’L + 1) log (Bq(og)) .

Next we have

logp(ac) = —log(A:) - %IOg(ae) - %IOg(Tr) - (1/‘4?) /ac.
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Taking the expectation of both sides gives

Ey{logp(ac)} = —log(A:) - 3 By {log(ac)} - 5 log(m) = (1/A2) pg(1/a.)-
Also,
Eq{logq*(a:)} =log (By(a.)) — 2Eq {l0g(as)} = By(a.)tg(1/a.)-

Therefore,

Eq{logp(ac) —logq*(az)} = —log(A:) - £ log(m) —log (By(a.))
+(By(ar) = 1/A2) tty(1/ar) + 5Eq {log(ac)} .

Similarly to E, {logp(8) —logq*(8)},
Eq{logp(a) —logq*(a)} = -%log(c2) 202 {IEg(a 7+t (Zg(a)) } + 3 108 Bg | + &
Similarly to E, {logp(a?]ag) -log q*(az)},

E, {logp(ajlas) ~logq*(03)} = —5E4{log(a,)} +1logT' {5(n+1)} - 3log(r)
+(By(o2) ~ Ha(1/a0)) Ha(1/03) + 5Eq {log(a2) }
—3(n+1)log (By(z)) -
Similarly to E; {logp(ac) —logq*(as)},
E4{logp(a,) —logq*(ao)} = —log(A,) — 5 log(m) —log (By(a,))
+ (Bq(ao) - 1/‘4(27) Hq(1/ao) T %Eq {log(ao)} -

Next,

K K
10g p {Tunors|@, %, (7))} = =15 3 aylog(2r) - %Z aer; log {(oF)?}
j k

Taking expectations of both sides gives

K n K
By [logp{@unersla, 1%, (07)7}] = =52 2 g 108(27) = 3" tg(anr) Ba [log {(oF)?}]
k=11i= n0b5+1 k=1
K

45 S oy opyt) B L= )}

k=11i=ngps+1

where

By {(i - )’} = {({Eq<wunobs) (@)}, - ﬂq(uz))Q T ) @)}, "5(%)} '

184



6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

The entropy of ¢* (@unops) 18
-E, {log ¢* (X unons) } = log |J 2(@anone) ”unobs| + % log(27) + %

Therefore,

Eq []’ng{wunobs|a lJ‘I (0$)2} - log q*(wunobs)] =

Z 5 Hgar) log(2m) - zZﬂqm.k)E [log { (o7)%}]

k: 1 nobs+1

Z Z NQ(azk)'u {1/(0' } {( Mk)} * nunObs log(gq(wunobs))

k; 1i=nops+1
Tunob. Tunob
+7umobs Jog (27r) + mumebs,

Moving on, we next have

K
log p(p”) = =5 log(2m) - § log(o3) = 75z - Lk — pu*
k=1

Taking expectations, we get

~%5 log(2m) - 5 log(o}.) - QUQZE {lu = al?}

Ey{logp(pn®)}

K
K log(2m) - £ log(02) ~ 553 - {Itg(up) ~ 1l + 0 )
k=1

The entropy of ¢* (") is

K
~Ey{logq" (u")} = & + K log(2m) + 1" 1og (0,(,1r) ) -
k=1

Therefore,
K
B, (logp(u®) - log " ()} = - 1og<au)ﬁg (g - l? + 7y} +
4308 (0
k=1
Next,

2 X X 2 X 2
logp{(c”)"]a"} = —%kz_;log (ai) = 5 log(m) - %Z_: log {(%)"} - ];1 (1/ai) /(%)
Taking expectations, we get
2 X X 2
5, [togp (o) 1a7}] = =} 3.1 (108 (a)) ~ & loa() - § 3. o {(01)°)]

K
= 2 Ha(u at a1/ (o7}
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Also,

Eq[logq*{wn:%iwq(aw)mg( o))~ 2107 (4 Gt D)

=1
—Z{%(uqm.ml)”}Eq [log {(o})*}]
5 o{(o1)*}af1/(op)?)
Therefore,
Eq[logp{(c™)*|a®} -logq* {(c")*}]

K

K
=-1 ZE {log (af)} - glog(w) +y 1ogI‘{% (uq(a.k) + 1)}

ikz Hatan)Ea [log {(o7)* }]—52(uqca.k>+1)10g(3q{(gg)2})

K_ k=1
2 a{1/(o7)°} {B af(e2)} ™ “fI(l/a‘é)} -
Similarly to Ej, {logp(a.) —loggq*(a:)},
K K
Ey {logp(a”) - logq”(a)) = - 3 1ox(4f) - §1o8(r) - 3108 (Byap)
k=1 K - .
+}; (qu;g) 1/(Ay) )uq (1/a2) +%;E . {log(af)}.

Moving on, we have

n n K
log Hp (aity .y aik |wi,y .. WK ) = Z Z {a;r log(wk) —log(ax)} -

=1 i=1 k=1

Ed

Taking expectations of both sides, we get

n n K
Eq {log 1_—{]? (ail, NN 7924 |w1, e ,LUK)} = Z Z [M(I(&ik)E‘l {log(wk)} — Eq {log(aik)}] .

i=1k=1
Also,
n n K
Eq {log [1a* (@i, am)} =2 2 [Ha(an) 108 (Hg(a)) = Eq {log (aix)}].
i=1 i=1k=1
Therefore,

n n
E, {lognp(aﬂ,...,aiK|w1,...,wK) —loqu* (ail,...,aiK)}

i=1

=1
n K

= 2 2 Hatag) [ B {log(wr) } =108 (Kg(an))] -
1=1k=1
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6.C. DERIVATION OF THE MARGINAL LOG-LIKELIHOOD LOWER BOUND

Next,

K K K
logp(wy,...,wk) = logF(Zak) —]glogF(ak) +kzl(ak -1)log (wg) -

k=1

Taking the expectation of both sides gives

K K K
E,{logp(wr,...,wk)} = logF(Zak) = > logl (ag) + Y (g — 1) Eq {log (w)} -

k=1 k=1 k=1
Also,
K K
Eq,{logq*(w1,...,w = logT" (Zaq(wk)) - > logT’ (aq(wk))
= k=1
+ 2% (g = 1) Bq {log (wr)}-

k=1

Therefore,

K K
E,{logp(wi,...,wk)—logq*(wi,...,wk)} = logF(Zak) —logTl (Zo‘q(wk))
k=1

K

—Z logT' () + Z logF( q(wk))
k=1

+ (=~ aggu)) Eq {10g (wr)} -

Adding all expressions together, we get the lower bound expression given in (6.7). We also

note that the following expressions equate to zero.

K n K
Z (ak - aq(wk)) Eq {log (wk)} + z; Z:U’q(aik)Eq {log (wk)} )
k=1 i=1 k=1

2
{Byo2) = Ha(1/a0) } Ha(1/02) — 3Hq(1/02) Eqlly = X B,

{Ba(o3) = Ha(1/a0) } Ha(1/03) ~ 3Hq(1/03) Eallo — X [,

and
K
,;“q{l/(a;gf} {Bq{(agf} (1/a )}
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Chapter 7

Alternative approach based on

variational message passing

7.1 Introduction

Throughout this thesis, we have dealt with the situation where approximate inference of a
possibly large complex graphical model is required. Until now we have shown the details
and benefits of using MFVB for fitting these models. An alternative approach, which
produces the same approximation but with a different algebraic system, is wvariational
message passing (VMP). The MFVB inference used by Infer.NET is based on the VMP
approach. The advantage of VMP compared with MFVB is that the messages are obtained
by using only a handful of algebraic rules. This allows more straightforward extension to
arbitrarily large models. In this chapter we only derive the VMP alternative algorithms
for two models from earlier chapters. Hence, the extension to arbitrarily large models is
not covered here.

The essence of VMP is to pass messages on a factor graph. These two notions are
introduced in Section 7.2. Often, these messages are exponential family density functions
of model parameters and are generally summarised by their natural parameter vector.
In addition, the use of natural parameterisations mean that these rules involve simple
algebraic manipulations. As will become apparent in section 7.7.1, VMP makes use of the
fact that particular forms of messages occur repeatedly, so algebra corresponding to these
forms only need to be carried out once.

Even though VMP can be shown to be more efficient than MFVB in terms of per-
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7.2. FACTOR GRAPH REPRESENTATION

forming the necessary algebra, it can also be notationally demanding to outline the rules
involved for general graphical models. This is mainly due to the notational and graphical
forms contained in Winn & Bishop (2005), Minka (2005) and Minka & Winn (2009) to
differ from each other in terms of the underlying rules associated with VMP. We have
found it best to work with the description of VMP as given in Minka (2005) and thus
have adopted the same notation here. The primary aim of this chapter is to provide a
notationally user friendly guide to the general VMP approach, with examples considering
formulation and comparison of the algorithms in Chapters 2 and 6 of this thesis.

Section 7.2 gives description of the factor graph representation of Bayesian hierarchi-
cal models. Sections 7.3, 7.4 and 7.5 introduce the natural parameter forms, primitives
and function definitions corresponding to the density functions that are used within this
chapter. The general VMP algorithm is given in Section 7.6 and the reader is provided a
walk through using two examples in Section 7.7. Finally, the derivations of the algorithms

presented are given in the Appendices that follow.

7.2 Factor graph representation

Factor graphs play a major role in VMP as they are used to illustrate the connection

between random variables in a specified model. The aim is to compute messages which

are then passed between factors and corresponding nodes on a factor graph. Probabilis-

tic DAGs have direct factor graph representations, e.g., given a DAG that illustrates the

conditional independence structure of, say, the random variables x1,...,x, these repre-
sentations arise from relationships such as
k

p(x1,...,2) = Ep(:nz | parents of x;). (7.1)

Another way to represent a model by its factor graph is to derive the joint density function

of the random variables and the observed data in terms of their corresponding factors. For

example, consider the simple linear regression model

y|B8,0° ~N(XB,0°I), B~N(0,03I),

(7.2)
02 |a ~ Inverse-Gamma (%, 1/a) , a~ Inverse-Gamma (%, 1/A2) .
The joint density function of y, 3, o2 and a is
p(y, B, 0% a) = p(y|B, 0*)p(a?|a)p(B)p(a), (7.3)
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7.2. FACTOR GRAPH REPRESENTATION

p(B) p(y|B,0?) p(c?a) p(a)
() () ()
[ \_/ L L i
16 o? a

Figure 7.1: Factor graph corresponding to model (7.2).

where each of the density functions p(y |3, 02), p(c?|a), p(B) and p(a) are referred to
as factors. The corresponding factor graph is given in Figure 7.1. The circular nodes
correspond to each of the random variables in (7.2) and the solid squares correspond to
each of the factors in the right-hand side of (7.3), which can also be derived from (7.1).
To keep notation simple, we suppress the dependence of 3 and ¢? on the observed data
vector y in the factor graph. Minka (2005) argues that factor graph representations of
models are useful for VMP approximate inference as will be illustrated in the sections to

follow.

7.2.1 Additional notation

When using VMP it is convenient to take advantage of the benefits of using a factor graph
representation of a statistical model. Factor neighbours notation play an important role in
the understanding of VMP in the context of factor graph representations. The following

definitions are key to the introduction of Algorithm 10 in Section 7.6.

Definition 7.2.1. Let A and B be sets such that B < A. Then

A\B = set containing elements of A that are not in B.

We define NVy;q to be the number of hidden nodes and Ng,. to be the number of factors
in a factor graph. For example, in Figure 7.2, Np;q = 10 and N, = 9 since 61, ...,609 and

¢ are hidden nodes and fi,..., fo are factor nodes.

Definition 7.2.2. Consider a factor graph with factors f;, 1 < j < Ng,. and non-factor
nodes 0;, 1 <i < Nypiq- Then for each j=1,..., N,

neighbours(j) = {1 <i < Nyiq : 0; is a neighbour of f;}.

190



7.3. NATURAL PARAMETER FORMS

Figure 7.2: Example of a factor graph.

It follows that each f; is a function of its corresponding neighbours on the factor graph.

7.3 Natural parameter forms

Here we provide the forms of the density functions used for the derivations of Algorithms

11 and 12 given later in this chapter.

Univariate normal distribution

The natural parameter form of the univariate normal distribution with mean p and vari-

ance o2 is

T 9 ,
)t

exp {T(m)Tn - (# + log(;Q)) - %10g (277)}

_|* _Im|_ pfo?
e[2] o5

are the natural statistic and natural parameter vectors. Under this representation, we

p(z;p,07%) = eXp{

where

define Npat to be such that

x ~ Npat (771>772) .
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Fact 7.3.1. The ordinary and natural parameters of the univariate normal distribution

are mapped between each other through:

pfo? . po=—m/2n
an

-1/20? o = —1/2ns.

m

2

Multivariate normal distribution

The multivariate Normal density function with n x 1 mean vector p and n x n variance-
covariance matrix ¥ is given in Definition 1.4.7. This density function can also be written

in its natural parameter form as

.
x >ty
T, Y) = ex ~Lyy - Llogl2n
p(w; 1, X) = exp [vec(mT)] Clveo(sy [ 2T H T g[2r 3|
= exp {T(w)Tn - % (L= e+ log|2|) - %10g(27r)}
where
-1
T n X
T(x)= ~ | m= L= L »
vec (xx') M2.vec —Qvec(Z )

are the natural statistic and natural parameters vectors. We define Npat vec to be such

that

T~ Nnat,vec (7717 772,V60) )

Fact 7.3.2. The ordinary and natural parameters of the multivariate normal distribution

are mapped between each other through the relationship:

m DT p
. . and
M2, vec = _5066(2 ) %

_% {Uec_l (772,1)60)}_1 m

_% {Uec_l (UQ,UEC)}71 .

Inverse-Gamma distribution

The Inverse-Gamma density function for a scalar variable x is given in Definition 1.4.9

but can also be written in its natural parameter form as
T

log x

1/x

exp{T(x)'m+ Alog B-1logI' (A)}

_A-

p(z; A, B) = exp +Alog B-1logT' (A)
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| logx m |
o] o2

are the natural statistic and natural parameter vectors for the Inverse-Gamma distribu-

where
-A-1
-B

tion. We define IGpat to be such that

x ~IGpat (1, 72) -

Fact 7.3.3. The ordinary and natural parameters of the Inverse-Gamma distribution are

mapped between each other via:

771:—A—1 A:_nl_l

n2 = -B B = —-np.

Inverse-Wishart distribution

The Inverse-Wishart density function with n x n positive definite scale matrix B and
degrees of freedom « is given in Definition 1.4.3.9 but has another representation using its

natural parameter form:

.
log | X| —2(a+n+1) | 4
X;p,X) =e 2 - log|B|-1logCp 4
p(X;5p, ) = exp lvec(X_l)] [ “Lvec (B) 5 log|B| -log €y,
= exp {T(X)"n - % log|B|-log Cy, 0 }
where
log | X| m La+n+1)
T(X)= N E = 21
vec (X 1) M9 —5vec (B)

are the natural statistic and natural parameter vectors for the Inverse-Wishart distribution.

We define IW 5t to be such that

X ~IWnat (11,m2) -

Fact 7.3.4. The ordinary and natural parameters of the Inverse- Wishart distribution can
be mapped between each other via:
m =—%(a+n+1) A

and
—%vec(B) B

2m-n-1

—2vec t(ny).

N2
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Multinomial distribution

The Multinomial density function with 1 independent trial and probability of success
p = (p1,...,pk) is given in Definition 1.4.13 but has another representation using its

natural parameter form:

:
x1 | | log(p1)

p(w1,. ., w; Lpr, ..o pE) = expy| :
v | [ log (px)
= exp {T'(z)"n}
where
T m log (p1)
TX)=| : |, mn=|:|= :
T, Mk log (k)

are the natural statistic and natural parameter vectors. We define Myt to be such that

{El,...,l’k"’Mnat (157717""77k‘)‘

Fact 7.3.5. The ordinary and natural parameters of the Multinomial distribution can be

mapped between each other via:

m = log(p1) p1
: and :

n = log (pr) Dk

ek,

Dirichlet distribution

The Dirichlet density function with parameters aq,...ag is given in Definition 1.4.14. Its
natural parameter form is expressed as
Iog(xl) ! al——l

p(x1,...,xla1,...,ap) = exp : :

log () ap—1

+§ log {T (o)} - log {F (iak)}}

k=1 k=1

K K
exp {T(w)Tn + Z log {T" (ax)} - log {F (Zak)}}

k=1 k=1
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where
log (1) m a; -1

T(z)= : ;M :
log () M ap -1

are the natural statistic and natural parameter vectors. We define Dyt to be such that

wl,...,.’L'k"'Dnat(nly-'wnk)‘

Fact 7.3.6. The ordinary and natural parameters of the Dirichlet distribution can be

mapped between each other via:

m=a;—1 pr=m+1

and

ap—1 Pr =M+ 1.

Mk
7.4 Primitive integrals and results

The following primitives and results follow immediately from the results involving moments
of random variables which take on distributions from Section 7.3. These moments aid in
the derivation of the algorithms considered in this chapter as they are presented in their
natural parameter forms.

We define

pNnat (:c; n ]) to be the Npat (171,72) density function in z,
2

PN

nat,vec

:B;[ m ]) to be the Npat vec ("717 "72,vec) density function in @,
M2, vec

Pic,,, (x; [Z: ]) to be the 1Gpat (171,72) density function in z and

g ™m
pIWnat (X’ ln

We now present various primitives and results concerning moments of the density functions

]) to be the IWpat (1m1,m,) density function in X.
2

given in Section 7.3.

Primitive 7.4.1.
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Primitive 7.4.2.

[} oo nL 7] ,
/N‘/ (z-v)° Py N EAT L ) dedy
oo Jeo e Ne2 | | M2

_ Tz2 (77%,1 - 2771,2) + Ty,2 (775,1 - 277y72) _ Na1My,1
4775,2 4772,2 20z,2My,2

where Py x,Y; a1 ) .1 s the joint density function of x and y.
nat 7’/([72 /rly72

Primitive 7.4.3. If x is a d x 1 vector

T . m
[I;dw x pNnat,vec (:B7 [ M2.vec ]) dx

= zlltr({vec_l (7’2,1/80)}_1 [771771 {vec_l (n2,v80)}_1 - 21])

Primitive 7.4.4. For any n x 1 vector a and n x p matriz B,

; g ™
e (a-Bzx)(a-Bx) pNnat,vec (a:’ [772,’1)60 ]) dm

=aa' + {Uec’l (772,1}@6)}_1 [anIBT + %Bﬂﬂ?{BT {vec’l (77277,66)}

1 T
- iBB']
Primitive 7.4.5. If [z1,...,24]" ~ Nnat, vec (171,17271,66), then

N 1 m
/Rd:mw] pNnat,vec (m, [ M2, vec ]) dw

=% [{UBC?I (772,1160)}_1 771L [{06671 (772,1)60)}_1 nl]j + [{’0604 (772,1160)}_1] y

ij

Primitive 7.4.6.

Primitive 7.4.7.

[T 0g@) prg,, (x; [”1 ])dm = log (=112) ~ ¢ (=11 ~ 1)
2
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Primitive 7.4.8.

o mm - e 25

where S is the set of all symmetric positive definite n x n matrices.

Result 7.4.1. Suppose that x1,...,xx ~ Mpgt (1;m1,...,nx). Then
E(zg)=€e™, 1<k<K.

Result 7.4.2. Suppose that x1,...,2x ~ Dpat(N1,--.,nK). Then

K
E{log(m)}w(nm)—w{z<nk+1>}, k<K
k=1

7.5 Function definitions

The following functions are useful for describing various VMP updates used throughout

this chapter.

j:(lal ]) = Lir ({vee ! (a2)} " [ana] {vec ! (a2)} " - 21]),

a2

where a1 and a9 are scalars.

o(la)

where a7 is a scalar and as is an n? x 1 vector.

(a1 + n;— 1) {Vec_l(ag)}_l ,

# ([ o ] ;b, 0) =66+ {vec™! (a2)} " [ba[C + {Ca1a]CT {vec ! (a2)} - 5CCT],
az

where a; is a ¢ x 1 vector, as a ¢ x 1 vector, b a p x 1 vector and C' a p x ¢ matrix.

T al b1 - CLQ(CL% - 2@2) . bg(b% - 2b2) _ a1b1
ag || ba 4a3 4b3 2aby’

where a1, az, by and bs are scalars.

an c

J ([ “ ] b, ) =~ [{vec (@)} " @], [{vec ™ (a2)} M@ ] #[{vec(a2)} ],
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where a; is a ¢ x 1 vector, as is a ¢ x 1 vector and b and ¢ both scalars.

el
a9 4(12

where a1 and a9 are scalars.

7.6 The variational message passing algorithm

Our goal is to obtain the mean field approximation to the joint posterior density function:

where 61, ...,0 Npiq are the parameters or hidden nodes and x contains the data or evidence
nodes in the corresponding statistical model. VMP aims to obtain the optimal ¢-densities

through an iterative scheme concerned with updating messages of the form:
My, g, and My, .,y for each ieneighbours(j), 1<j< N

The general iterative VMP scheme, labelled Algorithm 10, can be used to solve the optimal
q densities, by updating such messages.

Convergence of Algorithm 10 is assessed by monitoring successive values of the lower
bound on the marginal log-likelihood log p(z; q) and stopping once the successive differ-

ences are very small. The lower bound on the marginal log-likelihood is given by

Nfac Mhid

logﬂ(w;q) :Eq Z logfj (eneighbours(j)) - Z logq(el) . (75)
j=1 i=1

Within Algorithm 10, if neighbours(j)\{i} = @, the empty set, the expression

H My, ~ 1;(0ir) My, g, (07)

i’ € neighbours(5)\{i}

is taken to be 1, since there would exist no i’. Integration is replaced by summation if
Oneighbours(j)\{i} it Step 2 (a) contains discrete random variables. It is easier to work
with messages appearing under the same product sign to be from the same exponential
family. This is referred to as conjugate VMP. However, VMP is a general scheme and not
necessarily restricted to conjugate situations. When conjugacy exists within the message
updates, the functional forms of these messages are exposed and it becomes clear that

the parameters of these messages are inter-related, much like what happens with MFVB.
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Step 1: Initialise
My, ., ¢,(0;) for all i € neighbours(j), 1< j < Np,, to be arbitrary density
functions.

Step 2: Cycle

(a) For i € neighbours(j), 1 < j < Ngye,

my, fj(ai) < H mfj’ - '9i(0i)7
{j" # 7 : i e neighbours(j')}

(b) For ¢ € neighbours(j), 1 <j < Ng,,

1
My, - g,(0i) < exp f - H My, - ¢, (0ir) My, g, (0ir)
i’ € neighbours(5)\{i}

xlog f; (eneighbours(j) ) daneighbours(j)\{i} ] )

where Z = f H My, - (0ir) my, - 91-/(02") daneighbours(j)\{i}'
i’ € neighbours(5)\{i}

until all messages converge.

Step 3: For 1 <4< Npiq,

q*(6;) < H m}ﬁei(ei)/f H my. _, p,(0;) do;.

{j : ¢ € neighbours(j)} {j : % € neighbours(5)}

Algorithm 10: The general variational message passing algorithm.
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M <.
(.
<.

S <.

Figure 7.3: Factor graph corresponding to the marginal longitudinal semiparametric re-
gression model in (2.15).

These updates begin to exhibit particular patterns and remembering these patterns allows
one to streamline the calculations of VMP. This is especially useful for larger complex
statistical models. Examples of these patterns are given in Appendix 7.4 for the two models
considered in the following sections. In addition, when computing the VMP updates in
Algorithm 10, it is appropriate to work with the natural parameter forms of exponential

family density functions.

7.7 Examples

We consider two regression examples used throughout this thesis, namely the marginal
longitudinal semiparametric regression model (2.15) given in Chapter 2 and the mixture
model with measurement error (6.4) given in Chapter 6. We provide detail on the VMP

methodology specifically for these two models.

7.7.1 Marginal longitudinal semiparametric regression model

The factor graph corresponding to model (2.15) is given in Figure 7.3, where the circular
nodes correspond to each of the random variables, vectors or matrices and the solid squares
represent each of the factors in the model. To make notation simple we have combined

the mean function coefficients into a single vector, i.e.,

_|B
V= .
u
We aim to obtain a mean field approximation to the joint posterior density function:

p(v,a,0% 2 |y) ~ q(v)q(a)q(c?)q(D).

Following the rules of Algorithm 10 and referring to the factor graph in Figure 7.3 for the
stochastic node 3, the two factor to node messages to initialise are 1,5y ., (%) and

My, s) > = (X). We can set these to be any density functions, however to make the
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calculations simple and impose conjugacy we choose them to be the Inverse-Wishart(n, I,,)
density function. This can be written as:

- a7
log 3|
mys) - =(2) < exp vee (571 | Mp(z) - =

= log | 3|
Mt -5 (B <oy oy | Mol ») -2

where the natural parameter vectors 7], (s ., 5 and 7)), 5y - 2 are initialised to be

-n-1 -n-1
<~ ) — < :
Mp(z) - Lvee(I,) Moy, =) - = Lvee(I,)
The natural parameter forms of the density functions used for this model were given in
Section 7.3. Step 2 (a) of Algorithm 10 is concerned with updating the stochastic node
to factor messages. If we begin with the message My, | p(g)(E), we notice that the only

other neighbour of 3 apart from p(%) is p(y|v, X). This means that Ty  ,(5) () has

the update
mz —>p(2) (E) - mp(y‘v,z) -3 (2)
log | %]
= ex
P vec (2_1> Nx . p(X)
where

Ns - p) < Mpylv,s) - =
Similarly, M s S (Y, ) () « m,s) .5 (X), which corresponds to the natural pa-
rameter update:

Ms - pylv.o®) < Mh(z) - =
Step 2 (b) of Algorithm 10 is concerned with updating the factor to stochastic node
messages and focusing on stochastic node 3 which involves updating mys) - (%) and

My, x) > (). The first factor to stochastic node message to update is T,y _, 5(%).

Since the only neighbour of factor p(X) is the stochastic node X this message has the fol-
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lowing form

mp(z) N> (2) < exp {logp(z)}

. log [Z] '
o< ex
P vec (2_1)

~1(Ag+n+1)
—%Vec (By) '

-1 (Ag+n+1)
—%Vec (By)

This means that
M=) -x < l

and remains fixed at this value as it doesn’t depend on any other messages. The next

message has the form:

My, s) -2 (X) < exp { L pie ) () < My 5 @)
xlogp(ylv, %) d(v)},
where v = p + ¥4 | K, the number of columns in C = [X|Z]. Further breakdown of

M)y, =) > = (X) gives

mp(y|1/, -3 (2)

P fv {lvec (I;/I/T) ]

logls| | B
vec(E_l)_ —%' Vec{(yi_cilji)(yi_ci’/i)T}

1

T’p(l)|0'2) v ’r]p(y\u, ) > u)}

03

3

dv

1l
—_

m

2
! —%;vec{va (y; - Cwi) (y; - Cavi)"

><pNna‘c,vec (TIP(V|0'2) Vv

log|%|
vec(Xh)

o< exp

Myl z) - ) v}

.
where pNnat,vec (m; [77{ n;,vec] ) is the Nnat,vec(11,72,vec) density function in . Further

detail on this notation is given previously in Sections 7.3 and 7.4. Using Primitive 7.4.4
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we get

My, s) - 5 (2)

‘%gm (Mot -0 !
Mp(ylv, ) - vs Yir Ci)}

m
T 2

log | X

o< ex
P vec(X7)

where the function H is defined in Section 7.5. This corresponds to the natural parameter

update having the form

Np(ylv. =) > < —%ivec {7—( (np(u|0'2) v Py, ) - v Yis Cz)}

|3

Step 2 (b) is now finished for the updates corresponding to the stochastic node 3. Once
convergence is achieved for the messages in Steps 2 (a) and (b) corresponding to all
stochastic nodes in factor graph (7.3), we move on to Step 3 of Algorithm 10. For X this

involves the update:

My=) < Mywio?) - ) " Mo(ylv, =) - (v):
This means that
q"(X) is the IWpqa¢ (772(2) 1 n;(z) 2) density function in X

and can also be transformed back to the original parameters, such as those used in Chapter

2, by writing this as the
Inverse-Wishart {— (2’)’];(2) g TN+ 1) , —2vec (n;(z) 1)} density function in X.

Algorithm 11 gives the updates for all stochastic nodes in Figure 7.3 and the derivation is
given in Appendix 7.A. The lower bound on the marginal log-likelihood for this example
is derived by using the expression given in (7.5) and gives the same result as in expression
(2.17) in Chapter 2. Therefore, once the natural parameters are transformed back to the

original parameters, convergence is assessed in the same manner as before.
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Initialise:
-2 -2 -2
np(ag)—ng - [—1]; np("zﬂaé)*ae - [—1]; np(aﬂae)—”f? - [—1];
-27 0, .
Mpwlo®) - ot < [—1]’ Mowio?) v < I:—%VGC (Iv)]’

0y . -n-1 .
Moy, =) »v < [—%Vec (I,) ] b My, =) - < I:—%VGC (In) ] ’

-n-1
M=) -« [—%Vec (I,) ]
Cycle:

(@) My~ pae) < MpoZa) > ae + Map > p(o2lar) < Mp(a) - a
M52 - p(otlar) < Mpwio®) = o2 5 o2 = pwlo®)  Mp(o?lar) - oF
My~ pwlo®) < Mol 2) v 7 T o piyly,0®) < o) - v
Ns s pv,e®) M) > 5 NMe-pE) < Mhyp,s) - =

1

2

(b> np(g'ﬂae) — ay - _ (Ir’p(u|o- ) —> 0y +”7p(0'é|ag) - Gé )1+1
(nP(V|0'2) - Uz P((’e lag) - of )2

[\e][SN)

np(03|ae) o2 | _ (np(a‘f) e np(ffﬂae) - ‘“)1
(Ir'p(al) ~a” P(Uz lae) - ae)2

—%Ke ]
Mo(yly, ) - ue T Mpwio?) - u)

np(u|0' Yy—>or < [_%f(

Mpwlo?) v

F! 0

< 1 (77 2 R 2+7’ 2y 2) +1
gvec 0 blockdiag [( p(oglac) — op p(vlo”) - op 3 )IK[]

1<l<d
=t ("p(oﬂae) o2 Mywio?) - o2),

¢ {Im ®g(77p(2) -2y, =) - 25 n)}y

Moyl 2) ~v < vee[C{Tn @G (Mymy » 5+ My 2y - 55 )} C]

-2
Mo(yiv. ) -2 < [—% i=1Vec {7'[ (np(u|02) v T My, =)~ v s Yis C’)}]

until the increase in log p(y; q) is negligible.
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=3 2 vee {1 Moy o+ Moyl ) v Vi Ci)}

3

My, ) = <

Maw) ~ Towio®) - @) * Mo, =) > @)
M=) < M2 -2 M) -5
Forl1</<d:

Matar) < Mp(a) »ar =7

*
p(olae) — ae
*

My02) < Mpo2iar) » o2 T pwlo?) - o

aar)’
"7;(03), ’l’];(y) and T’;(E) of the optimal density functions ¢*(v), ¢*(a?), ¢*(a) and
q*(X) for approzimate inference in Model (2.15).

Algorithm 11: VMP algorithm for determining the natural parameter vectors 1)

7.7.2 Mixture model with measurement error

The factor graph corresponding to model (6.4) is given in Figure 7.4. We impose the same
mean field approximations on the joint posterior density functions as given in Chapter 6.
Algorithm 12 gives the VMP updates corresponding to this model. Details of the deriva-
tions for the updates given in Algorithm 12 are given in Appendix 7.B. In order to impose
conjugacy, we initialise the messages corresponding to stochastic nodes a®, (0'”5)2, 052, ae,
02 and a, to be the Inverse-Gamma (1,1) density function, corresponding to the natural
parameter vector being set to [-2 —1]". The messages corresponding to the stochastic
nodes &, and p* are initialised to be the N (0,1) density function, which corresponds
1

to the natural parameter vector begin set to [ - §]T. The messages relating to the

,%,...,%) density

columns in node a are initialised to be the Multinomial (ail, e a1
function, where K is the number of mixture components used. This corresponds to the
natural parameters being set to log (1/K),...,log (1/K). The messages relating to w are
initialised to be the Dirichlet (w1,...,wk;2,...,2) density function and this corresponds
to the natural parameters begin set to 1,...,1. Lastly, the messages corresponding to o
and 3 are initialised to be the N (04, I;) density function, where d is the dimension of

the corresponding stochastic vector node, and this corresponds to the natural parameter

vector being set to [Od - %vec (Id)]T.
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Initialise:

-2 -2 0
M@y >t | 1 |F Mofen?as) —ap | 1 [P MoGud) > i < | _

N[

-9 -2
Ty {(ot)?)at) - (o) [_1]? Ty {ala, w*.(0)%} > (o1)* [_1 ]? M) » e < 1

0
Mo {afa. " (o)) = o~ 1OBUIED Ty (ala i (o)) — it [—%]

0

"p{wm,m,(owf}»zumbs,i*[_ ]3 Mp(aslor) — ag, < 108(1/K)

1
2

-2 02
Mp(arln) > <15 Mpeola,@,02) » 02 [_1 ] P M) »a I:—%vec (12)]
-9 0 -2
np(0'§|ao) — Qo - —]_ 7 np(o‘a7$70'g) — Tunobs,i < _% 7 np(o-?)‘a’o) - UCQ) - —1

02 -2

np(o|a7:t:,0'§)—>a - [—%VGC(IQ)]; np(ao)%ao < [_1]
03 0

np(ﬂ) - IB - [_%Vec (I3) ] 7 np(y|,37w,ag) — Zunobs,i < [ — ]

1
2

2] -3/2 1 9
MoiB.2.0%) ~ 0 | 1 |7 Mp(a) »a © ~1/A% | Mp(o?as) »a- < | 1

03 ‘ -2
MToyiB.2.02) > 8| “Lyec() |* o(othas) o2 | 21

Cycle:
(@) Moz - p(at) < Mp{(op)?la} >t Mag - p{(op)?la} < Molad) - af

Mop)? - p{op)laz} < Mp{ala.u®, (07)} — (o})?
No1)? ~ plala.p (07)°) < Mo {(o7)?Iat} ~ (o7)?
Nas. > plala,pw®, (07)?) < Mplailon) > aiw’ Tai > plankor) < Tp{ala, u, (6%)?} > au
Nor = plairlor) < Mpwr) > wid Mo = plwr) < Mp(arkor) - w
M - p{la.w, (00)?) < Moty s i > o) < My {ala, u, (07)?) - i
Mo - plola,z,02) ~ Mp(a) ~ o> Mo pa) <~ Mp(ola,2,02) -
Mo2 = plola@,02) < Mp(o?la0) » % o2 = p(02las) < Mp(olar,z,02) - o2
Moy = p(o2las) < Mplan) > aoi May > plas) < Mp(o2las) - as
Mz noes = p{la, 1%, (0%)°} < Mp(y|B,2,02) > 2anovss T p(olet, @,02) = Tunobes
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M oves = 2B, 2,02) < Mp{z]a, 17, (67)2} = zuncvss T Mp(oler, ®,02) = Tunovss
Mnones = p(ole,2,02) < T {@|a, 17, (67)2) > zunoves T Tp(ylB, 2, 02) > Tunoves
N5 pylB.z,0?) @) -6 Ma-pB) < Mhylg,2,0%) -8
N2 5 pyiB,2,02) < Mp(o2las) > 028 Mo? 5 p(o?lar) < Mp(ylB, 2, 02) - o2
M. > p(o2a) < Mp(as) »ass Mae — plas) < Mp(o2lac) > a
— 2
(B) Mpaz) - oz < [_1/(31{1%)2 ] v M) » i [_111/72‘7;3]

1

2

My {(ot)?lat) ot < (1 ot o) o oo Pl - o),

("p{wm,m, (@)%} - (62)* M {(o8)lag} ~ (az>2)2
_3/2
77 aa]g %ai*—n (7'Z 2aa: —>az +1
My {(ot)lai} ~ (o) (et My - ),
("pWé) ~ ai My (o ?lat) - a:)

2

np {(B | a, [Lz, (01)2} — Zunobs,i

1
—5 €Xp (ﬁp(amwk) > aun Ty {ala, pu*, (0%)?) ~ )

o (TIP(Mi) - Hﬁ”?p{:c\a,p,z, ()%} — ,ui)l

(np(ui) = 1 My (2la, w7, (07)2) ~ u)

y (M ot (o2 T 7, (07} — 02),

("p{wz)ﬂaﬁ} = (0 My {ala, w7, (07)?) > (o1)?),

_% eXp (np(aiﬂwk) —ai T np{«’£|avuz» (0*)} - aik)
y (np{(azf)2|ai} - (sz)2+?7p {z|a,p”, ()"} - (sz)2)1+1

("p{<oz>2|ai} = 002 My {ala, p, (67)?) > (a:)2)2 ]
Mp(ailwr) - am < (¢ {(np(wk) — wi T p(airfor) - wk)k * 1}

K
~ LZ::I {(np(wk) —wi T p(ailwr) - wk)k " 1}])

np(aik|wk) —w < OXP (77;o{az|a7 u”, (O'I)Q} - ak + np(aik|wk) - aik)

0
M) > < k=1 "p(ﬂ)»ﬁ*[-gvec(qg)]

7%
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+ +1
("p(a?,mo) = o2 (ol 2, 02) - az)l

("7p(03|a,,) =~ 02 (ol 2, 02) - 03)2

Mo - 0 Mot ),

X _§Ol‘unobs,i (

np(al) - a1+’r’p(o|a,w703) - a1)2

np(o|a, Z, 03) — ZTunobs,i <

+7 (Mo(a) > o+ My(olane,o2) - ai 1:2) |

) R 03)1”

2
("p(aimo) = 02 My(ola,z,02) - 05)2

| x (np(al) o T np(o|a,a:,a(2,) - al) _

Mp(ole, z,02) - a

n . - L2t 2y 2) +1 ~ ]
( p(oslar) » o5 plola,x,0;) > 05 ), x [ nat (X)TO

Q(wunobs)

My(0200) » 02 p(olar, 2, 02) — 03)2

+ +1
) ("p<azwao> - o2 Mol @,0%) az)l

cvee (B (X))

q(®unobs)

2("7p(az|ao) > o2 (ol 2, 02) - 03)2

0
Mp(a) > a < [—%vec (é[g) ]

|
N3

2 2 < —_~
"717(o|¢3u:::,<7o)—>oro [_lEnat (||o—XaH2)]

2 q(munobsva)

_3
2

Mp(o2las) » 02 < ("p<ao> ~ a0 My(02a,) » )1

(np(ao) > ao +np(a§|ao) - ao)

2

N[

My(o2a) » a0 < ("p<o\a,$,gg> =~ o2 My(02a,) az) +

1
.
i ("p(om,m,ai) =~ 02 M p(62a,) »az)

2

n 2y , 42 na
i) - o [ g o (Hy—XﬁH2)]

_5 Q(munobsvﬁ)

N[

<« + +1
np(aaas) - Qe (np(y|ﬂ7w70-52‘) - U? np(o'?|ae) - U?)l

(np(y|/87 x, U?) - a§+fr’p(ag\a5) - 03)2
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My (ala, u”, (67)*} — (o7)?

"y {@la, u”, (0%)%} - aix

Al

i

1
~3eXp (np(aik\wk) > ai T lp {ala, u?, (07)?) » aik)

T2

1
exp (np(aidwzc) —>apw * np{wla’uz, (c)*} - aik)
% I{(np(y|/@7 CD, G?) - xllDObS,i + np(()'a’ w7 0-3) - xunobs,i

+f’7p {:E ‘ a, va (Ux)z} —> Lunobs,i ’ (T’p(ﬂi) - ,Ltﬁ

My (zla, u*, (07)?) > 1

("p{(oz)2|a:} > 00)° T My {@la,u®, (67)%) ~ <ais>2)2}
My {(o7)%a} ~ (o1)* T o {ala, u*, (07} (05)2)1 B 1}

) (7, (o108} = 01 Myl (™)} = (0@2)1“

T xT €T + xT €T T
(T, (o2 20 o5 T (e (o)  (007°),
xI np(y|ﬁ7 T, 052) = ZTunobs,i + np(0|0£, Z, (73) —> Zunobs,i
+Ir’p{$ | a, Hz7 (01)2} — Tunobs,i ’

(M)~ 5 * M ot 7))

np {.’1}|CL, u, (o_x)Q} -

<«

Np(y|8,2,02) - B

(np(af\as) - 0. y(yl,2,0?) - Uf)fl

~5 exp (”pmm) = ai Ty (ela, u*  (0)7) — )
B @),
) (" () — o7 M et} = Go22)
("p{wmai} = 01 My (ela,u® . (7)) ~ (01)?),

<~

_% €xp (np(aik|wk) —ap T 77p {:c\a, e, (01)2} - aik)
M (o208} = (o0 M (097} = 0107),
e (az>2)2 )

R e

(np(ff?kls) - aa+np(y|ﬁ7m7052) - 03)2
xE 7t ) (X)T Yy

Q(wunobs

2("1)(03\%) o2 My, 2, 02) - 03)2

xvec {E nat (XTX)}

q(®unobs)
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o

Bl e
S

Mp(o2a) » 02 < _(np(aa) ~a.y(02a) » as)l+1 o Mp(ac) > a. < [
(”p(aa ~ o My(o?a.) )

A

("pwz\as) =02 p(yi8, 2, 02) 03)1“

("p(aaaa ~ o2 Myy8,2,0%) a)

_%ydfunobs7i Enp(ﬁz) o +np(y|ﬂ, @,0?) ~ B’”)1

X

Nps.) > B. +T,p(y|ﬂ, x,02) - ﬂz)g
~T (M) = 8 * Mp(ylp. o) - 5 1:3
np(y|ﬂ,m,0§) —> Lunobs,i - ~Cxunobs,i J (np(ﬁ) -3 + np(y|ﬂ7m,o'§) — ﬁ7 27 3)}

("p(aaaE) = o2 My, 2,0%) - 03)1“

1
1
("’p(aﬂas) =~ o2 y(yi8, 2, 02) - a)

« (np(ﬂz) 8. Mp(y|g.2,0) - 8.),
! (M0i6.) = 5. Mgty - 5.,

until the increase in log p(y;¢) is negligible.

M) < Myolasw,0?) » ot Mote) =8 Myo2) < Moolanw,02) - 02 * Mo(o2ja,) - o2
Matan) < Moo2lan) - a0 T Mp(as) > a

For1<k<K: 'f]q(ai) < np(aﬁ) —a? + np{(g;g)?\a;g} - af

My (o7} ~ Mo it} ~ @7 " Tolela w012} = (07)?
nq(,ui) - np{w|a, pe,(0")} - i * np(ﬂi) - Wi
Forl1<i<mand 1<k<K: Ir’;(aik) « U;{mla 1 (6%)2) - an + U;(aik‘wk) S an
Ir’;(wk) < T];(aik|wk) — Wk + n;(wk) - Wk
M1 < Mg, e.0?) -8 ) -8 M) < Thwise.o?) — o2 T Tho?la) - o
M) Moo2as) - ac ¥ Moaz) — a

For 1 <4< Nypops :

* * + *
nq(munobs,i) - np {ar:|a7 u”, (U””)Q} = Tunobs,i Irlp(y|,37w,0'?) — Zunobs,i

+n

p(o|a, z, 0’3) — Zunobs,i

Algorithm 12: VMP algorithm for determining the natural parameter vectors of the optimal
density functions for approzimate inference in Model (6.4).
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xr

unobs

p(ac) ac  ploflas) o2 o2 plojlas)  a,  plao)

Figure 7.4: Factor graph corresponding to the mizture model with measurement error given

in (6.4).
7.8 Discussion

The general VMP algorithm, presented as Algorithm 10, is a useful guide, in terms of
notation, for representing the three main phases in a VMP scheme. The two examples in
this chapter provided further details on the use of natural parameter forms and primitives
for certain density functions when using VMP. The extension of VMP to arbitrarily large
models may not be immediately obvious from the examples discussed here, however the
ease by which certain primitives and results can be used for larger and more complex
models makes VMP an attractive alternative to MFVB.

For the interested reader, the efficiency of the VMP approach can be seen from the
examples given in Wand (2015). Wand (2015) defines the notion of a fragment, which is
a sub-graph of a factor graph that consists only of a single factor and its corresponding
stochastic neighbor nodes. These fragments represent the underlying structure of a wide
range of large semiparametric regression models and gives VMP the advantage of being

more amenable to modulatization and extension to larger compex models.
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7.A Derivation of Algorithm 11

In this section we describe in detail, the derivations for Algorithm 11. These derivations
have made use of the natural parameter forms, primitives and functions defined in Sections

7.3, 7.4 and 7.5.

7.A.1 Step 1: Initialise factor to stochastic node messages

The derivation of the updates corresponding to the ¥ node in Figure 7.3 were given
in section 7.7.1. Here we give the derivations of the updates corresponding to the rest
of the nodes in the factor graph. The Inverse-Gamma messages are initialised to be the
Inverse-Gamma(1, 1) density function and the multivariate normal messages are initialised
to be the N(0,, I,) density function, where v = p+ Zgzl K. These messages can be written

as

Myl 3) - v (B,0) < exp

Np(ylv,=) - u}

My, (o?) >0 (Biu) < exp

| vec (vv7) | Tpvio?) > ”}

2
mp (0_2|a) L2 (0' ) <« exXp 1/0_2 Ir’p(gﬂag) — o'g

mp (o’la) > a (a) - 1/ay np(af\ag) — ae

d [10g (02 1
mp(l/|0'2)—>0'2 (02) < p{z lg( 28) np(u|0'2)—>af

/=1
4, [1og (ar) |
og (ay
Mya)-a (a) < €xp K:Z; 1/ag M p(ac) > ac

and these settings correspond to the natural parameter vectors having the following initial

values:

0, 0y
Myl x) > v < [—%vec (I,) ] RUCI SR l—%vec (I,) ] ,
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-2
Mpwlo®) » ot | | Mo(otlar) > oF < [_1 ]

-2
'r]p(gﬂaé) — ay < _1 9 ,r’p(ag) — Qy < [_1 ] *

7.A.2 Step 2 (a): Update stochastic node to factor messages

The next stochastic node to factor message to update is 1%, _, )y, %) (v), and since the

only other neighbour of v apart from p(y|v, ) is p(v|e?), this message takes the form

ml/ —>p(y|lj,2) (V) < mp (1/|o'2) -V (V)

and can be written as

1%
My - p(yly, ) (V) < exp {[Vec (vv7) ] Mowio®) - u}

where
Ny = pyly, o) < Thwle?) - v

Similarly,

m, . ,we?) (V) « My 5y -0 (V)
Moz pwlo?) (o?) < My (6%a) - o (o)
Moz piotia) (°) < MYy ()02) - o2 (07)
M, p(o?a) (@) « Myyq) 4 (a)

ma - p(a) (a) < mp (0'2|a) —-a (a)

which is equivalent to the following natural parameter updates:

n, - p(vle?) < np(ylv, Y)-v
No2 - plo®) < Mp(o?lar) - o?
M52 - p(otlar) <~ Mplo?) - o?
N, - p(otlar) Mp(ac) - ac

Nay > pac) < nP(UﬂaU - ay
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7.A.3 Step 2 (b): Update factor to stochastic node messages

The next factor to stochastic node message to update is M,,, 1, ) - (V) and takes the

form
1
Tnmm%z)euﬂﬁ*‘@@{ e 71TV = p(yle, ) (B) X My, 3 - 5(3)

xlogp(ylv,X) d X}

where Z is the normalising constant.

My (v, 3) - (V)

o< exp / {

v [ cnes)y
><{!vec(wﬂ)] %vec(CT(Im@)El)C)]}dz

log [%]

vee (£°1) (np(E) -2t y(yy, =) - 2)}

— = {Im ® fnxvzz_lplwnat (2; 77p(2) -3 ‘
T (g, 3) - 3) =}y
- o lvec (vv') ] 1 1
zvec [CT {Im ® /ﬂ-wnz Drw (25 M=) - =
! Mp(yly, ) > Z)dZ}C] :
[ v ]T - {Im®g(77p(z>»z”7p(y\v,2)+2)}y
= exp
vee (7)) || 1yec [CT {Im ®G (np(g) x t Mp(yly, 3) > 2)} C]

This means that the natural parameter vector has the following update:
CT{In @G (My(m) - 2+ Moy ) - )| ¥
Mo(yly, ) > v <
%VGC [CT {Im ® g (np(z) et ’I’]p(y|u’ E) N E)} C]
The next message begins with
1 2 2
mp(y|o_2) N u(V) <~ exp {AfoszQ = p(v|o?) (0’ ) X mp(y|02) 5ol (0‘ )

x log p(v|o?) da’2}
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. . . 2 2 ; .
Collecting like terms in 170 - %P(V|02)(0- ) and mp( ,2(0%) gives:

vlo?) >

mp (u|a'2) N U(V)

:
log (o7)
P [Rio {Z [ 1/o? (np(ffﬂae) ~ o7 T Mp(v)e?) - U?)

(=1

0

.
-1
) [ v ] 1 F 0 s
vec (vv') —gVec 0 blockdiag (AIKZ)

2
1<l<d %
.
v
= exp
vec (vv')

1
B} vec

F! 0
: o1 ®\ 7 2
0 blockdlag{( A PG (1 )dag)IKz}

1<<d

2 =[n? n?]T . Using Primitive 7.4.6, we get

where N® = ﬂp(ggm) So2 T T’p(VIUZ) -0y

0

.
v F! 0
~ P vee (vvh) ~Lvec ne+1
2 0 blockdiag ( L )IKZ
1<<d 772

This leads to the natural parameter update

F! 0

Mowlo?) »v < ~Lvec C((n®+1
0 blockdiag I,

1<l<d ;B

Next we look at the factor to stochastic node message going from p(v|e?) to o2

1
mp(u|a2) _)(72(0'2) <~ eXp{‘/RvEmV_’p(VWQ)(V) X mp(y‘g2) _)V(l/)

xlogp(l/\O'Q)dV}
v
o oxp /v {lvec (vv") ] (np(?ﬂ”vz) - v pwio?) - V)}

y log(ag) ! —%Kg 5
{;[ 1o ] [%uﬂ”d
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Since No(yv, =) > v is a vector that can be partitioned by each of its components, i.e.,

Mp(ylv, =) > B
Moy, =) - v = np(y\u,zz) S
Mp(ylv, =) > ua
0'2) as

and similarly for Np(vio?) - v then we can write m, (vlo?) > o2 (

| " |
| 1 2 . :
_ifRuz | pNnat,vec (uf ’ np(y|u,2) Sy T np(l/|o'2) - ug) dug

Using Primitive 7.4.3, this becomes

d [ 1og (o2 ! -5 K,
S R )
= , 27 \ Moyl =) - we * Mpwjo?) - u,

and thus the natural parameter update is

1K, :|

Irl l/tT2 —>0’2<—
p( | ) ‘ [_%f(np(y|’/7z)_>u2+np(l/0'2)—>’U,g)

The next message to update is

1
mp(o_2|a) S ol (0-2) «~ exp{v/ﬂégozma_)p(azm)(a) X mp(02|a) N a(a)

xlogp(UQ\a)da}

2 [1og(ar) |

{Z ! ) /aj (Mot~ o0+ Mytotian) ae)}

§ d 10g;(cr?)-T -3/2 “

{;[ 1/0? ] ll/ag]}d
-3/2

¢ log(ff%)]
= exp © 1 .
{lel it | |-, ag ViCrat (96 Mooy = a0+ Mp(otlar) =+ an) de

The use of Primitive 7.4.6 gives

] ~3/2
1 2
mp (0_2‘0) N 02(0-2) o< exp Z [ og (O-QZ) ] _(np(ag) R a£+np(03|a4) N a2)1+1
(,r’p(az) — ag+np(o—g|a£) — a5)2 ]

216



7.A. DERIVATION OF ALGORITHM 11

Therefore, the natural parameter update is given as
-3/2
<« ~ (lr’p(ag) — ay ,r,p(aﬂaz) — ag) +1

Mp(o?|ac) — o

(%(ae) = ae (o2 ar) - az)Q

The second last factor to stochastic node message to update is

1 2 2
mp(o_2|a)_>a(a) « eXp{ngOEm‘TQ"p(U%)(U )me(a2|a)—>o'2(a )

xlogp(o?|a)do?}

d log(az) !
o CxXP .[R{d {Z[ 1/025 ] (np(V|0 %) -0} np(aeae)ﬂge)}

l=1

log (aé) % o2
{Z! Vo ] ll/o%]}d f

T 1

4, | log (ar) 2
= exp > 1 2 2
{le [ _/0 o2 P16t (85 Myuio®) — o2 + Myotlan) — 02) 407

Using Primitive 7.4.6, this becomes

1

T 2
d | log (a . .
exp Z[ ( 6)] _("p(,,|a2>ﬂ; "p<a%|az)ea%)1 "t

| 1ae

R

2
and so the natural parameter update is

1

np(aﬂae) —ar | _ (T,p(”|o' *) ~ a7 +nP(Ug|a2) - 03)1+1

(ats1o o7 Myttt = ),
The last factor to stochastic node message to update is 17,4

_, o(a) and has the form
mp(a,) — a(a) < exp {% Ing(a)}

< [1og(ar) |
P{ZZ;[ 1/ay ] }

which means that the natural parameter update corresponding to this message is

-3/2
-1/ A2

_3/2
ORI IEVPT
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and remains fixed at this constant value since A, is a hyperparameter to be specified by

the user.

7.A.4 Step 3 : Optimal ¢-densities
Once convergence is achieved from Steps 2(a) and (b) we get the optimal g-densities of
each stochastic node through:

o) < Towio?) ~ @) " o =) - @)

Ny=) < My, s) - T pz) - =
and for 1</ <d:

Macae) < Motar) > ae * My(o?lar) - a

* - * + * .
Myo2) < Mp(otiar) » o2 T Mp(vlo?) > o
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7.B Derivation of Algorithm 12

This section gives the derivations for the updates given in Algorithm 12. Here, we also

make use of the natural parameter forms, primitives, results and functions defined in

Sections 7.3, 7.4 and 7.5.

7.B.1 Step 1: Initialise factor to stochastic node messages

We initialise the factor to stochastic node messages to be

k=1

.
. K | log (a®

mp(a“”)—>a“” (a )eexp{Z[ 1/(@;)] 'r’p(aﬁ)%a“}g}
k

. K log(ax) !
M (07 a7} - a* (@ )«exp{Z! 1/a;gk ] np{(ai)Qaii}*ai}

k=1

: & [ros{(or)’ '
T (6% a7}~ (o) 10O )Q}FGXP{;[ 1/{(05)2}] "p{(a,zfaz}»(a:f}

i[log{(ai)z}r

232
m p{w|a7ﬂm7(o_z)2} N (a_z)Q {(U ) } < eXp{
Ny {@la, u*, (o7)*} > (azf}

T
a1 np {:c|a, u®, (01)2} = Qi1

n
mp{m|a7”1-7(o_w)2}_>a(a) < exp 2,
&K My {zla, p”, ()%} - aix
.
n | @il np(ai1|w1) - Qi1
M ya|w) - a (@) <expid :
i aiK np(aiK|wK) - AiK

T
Munobs Tunobs.i
m p {m | a, p‘mv (o-w)Q} —> Lunobs (munObS) <P Z]_ 1'2
1=

unobs,i

an {:I) ‘ a, 'ux’ (UI)Q} —> Zunobs,i

=1 unobs,i

n
ungbs [ xunobs,i

]
M 0], 2,02) > Tunobs (“’“““’“)eexp{ % | ] "p(oa,m,azwxmb;}
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k

K T
223
M (z)a, w7, (67)?) - u (B )“exp{z[ﬁ] "p{wavuﬂ(o“)?}wz}

K
M () » e (B7) < exp {Z np(/ik)_’ﬂk}

k=1

T
IOg (wl) np(a1|w1) - w1

M=

k=1

M p(a|w) > w (W) < exP [
log (WK) J 77p(aK|wK) - WK

T
log (W1) np(un) —> W1

K
mp(w)%w(w) < exp kZ::l

10g (wK) _np(wK)ewK

.
m 2 (o) < exp * n 2
plo|la,x,05) > a vec (ozaT) plola, x,05) > a
T
o
M p(a) - a (@) < exp {[ vec (aa’™) ] (o) - a}
.
log (02)
M ol 02) o2 (75) expu Vos | Motolera,ot) -~ o2
T
log (Jg)
T (o2a) o2 (75) < xp {[ o2 | Moetlan) » o2
log (a,) |
0g (Ao
™ po3lar) ~ a, (1) eexp{[ 1/a, ] My(oia0) *“"}

T
log (ao)
mp(ao)_)ao (ao) <_exp{[ ]_/ao ] np(ao)"ao}

/8 T
m g *ﬁ(ﬁ) - eXp{[vec(gﬂT)] My(s) ﬁﬂ}

Tunobs €T bs.i T
unobs,i
m p(y | ﬂa €T, O—S) —> Lunobs (munobs) < eXp Z 332 i Ir’p(y|ﬁv Z, 0—52) —> Lunobs,i

=1 unobs,i
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13 T
M y18,2,02) » 6 (B) < eXp{lvec (IBBT)] Mp(yls.z.0?) —nﬁ}

-
log (052)
mp(y\,@,w,ag)eaf (U?) eexp{[ 1/0-52 fr’p(y|ﬂ7m7ag)—>o—§

9 log (02) !
m p(U?|aE) — O’? (05) < exp [ 1/0.? T]p(U?'aE) - U?
log (a.) |
og (as
M 4(0%a.) - a (ac) eexp{[ 1/a. ] nP(U?ae)—’ae}

T
log (ac)
mp(as)g’as (ae) (_exp{[ :[/a‘€ ] np(as)%as}'

The initial values for the corresponding natural parameter vectors are set as:
-2 -2 -2
Moty ~at | _1 | Molen)az} —ap | 1 [ To(o?ao) ~ 02 | 4

-2 -2
My ((o1)%ai} ~ (o7)* < [_1 ]% My (ela,u*, (07)?} ~ (o7)* © [_1 ]?

1. 1Y.
np {a:|a, u", (Ux)2} —> Qik - log (F) ’ np(aik|wk) —amw < log (F) ’

0 0
Ny (zla,u*, (0%)*} > up < [_% ]; Mp(ug) - g < [_ ]; Mp(arlwr) — we < 15

1
2

0
Mp(en) > we = ¥~ L5 np{m\a#”,(a”)Q} - Tunobsi [ ];

N

0 02
np(o|a,m,og) — Zunobs,i < [ _% ] ’ Ir’p(o|a7m7o-3) - - [ —%Vec (12) ] ,

02 . _2 .
rte) e —gvec(Iy) | Moo, ~ o2 | |

-2 ' -2 _ 03
np(cr§|ao)—>ao(_ a0 'r]p(ao)eao(_ ERE np(ﬁ)—»ﬂe —%VeC(Ig)
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0

<«

np(ylﬁ7 z, Ug) — Zunobs,i

_2-
b MpylBe,0?) - 02 © [_1

1
2

0; |
Mp(o?ar) >0 < | 1 |/ ”p(yw,az,ai)»ﬂ“[_%vec(fg)

-2
o2y »a. |y |/ ’7p<aa>»af[_1]

7.B.2 Step 2 (a): Update stochastic node to factor messages

The stochastic node to factor messages have the following updates:
M 4o par) (@%) <M p{(0*)|a®} - a® (a®)
M @y > p{@)la} M plalaw (09} - (@)
M (o) = pelan (67} < T p{(0")|a"} ~ (o)
M0 pfelau (02)) < m
m

p(a) - a’ a—p(a) < mp{w\a,u‘",(ax)g} -a
woplalw) M pw)swi Mo pw) <M pa|w) »w
m u” »p{m|a,;ﬁ,(o"“‘)2} < mp(ﬂz) - p”

m,: »p(p*) < m p{m|a,uz7(az)2} - u’

a-plo|az,0?) M pa)»ai Maspa) <M yola,2,02) - a
M 2, pola,z,02) < M poas) » 02 T 62 5 p(o2an) <« T p(o]a,@,02) - o
Qo —>p(a§|ao) «m p(ao) = ao’ m ao = plao) < m p(ag\ao) - a,

+M

m <~
Lunobs —> p{m ‘ a, Mxv (01)2} m p(y|,3,a:,a§) —> Lunobs p(0|a:~'13702) —> Lunobs

Lunobs —> P(’y|ﬁ,m,03) «m p{:lt | a,[.lzz, (01)2} — Lunobs +m p(O|O¢,iL',UZ) — Lunobs

) < m

Tunobs ~ (0| o, @, 0, p{zla,u”, (0%)*} > Tunobs My 8,2,0%) ~ Tunons

Mg, oy18,202) M pB) -6 M E-p) <M yy8,2,02) -8

m ~m : m ~m
o? > p(y|B,z,02) p(o2lac) = o2 o? > p(olla:) p(y|B,z,02) > o?
™M pe2la) < M plas) »asr M »plac) < MM p62las) > ac

and this is equivalent to the following natural parameter updates:
Nai > p(ap) < Mp{op)?ai} > ai’ Mag > p{(o)*lat} < Mp(ad) > af
Moty = p{(o8)?az} < Mp{wla, u®, (67)%} ~ (o})?
Not)? - plala, u. (1)) < Tp{(0D)lat}  (07)?
naik — p{a:|a,p,z, (J,f)Q} < np(aik|wk) - Qg naik — p(air|we) < ?71) {w|a7p,z, (01)2} - Qik

Ny = pairlwr) < Mp(wi) > wid Nk > p(wr) < Mplarlwr) - we
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v p{ala, w02} o) > nis T = p(ud) < Ty {la, w*, (07)*} > 43
= plola,z,02) ~ Mp(a) » &b Tla = p(a) < Mp(ola,z,0%) ~ o

o2 > plola,z,02) T Mp(o2jan) » 027 M2 = p(o2lar) = Mp(ole, x,02) > o2

up

N

7 -

Moy~ p(o2a0) < Molao) = a0r May > p(as) < Mp(o2la,) » a,

M inovs = p{ala 17, (0°)2) <~ Mp(y18,2,02) = Tunovss T Ip(ole, @,02) = Tunobe.
M nonss = pwlB, 2,02~ Mplz|a, 1, (09)2) = zunovss T Mp(ole, @, 02) > Tunobs.
Mo = plolz,02)  Mpl@|a,u”, (0%)2) = Tunobes T Tp(ylB,2.02) — Tunoves
M8 - pylB,z,02) < o)~ 685 "5 pB) < Mpy|B,2,02) > 8

Mo? - piB,2,02) < Mp(o?la.) - o o2 > p(o?la:) < Mp(y|B, 2,0?) — o2

.. > p(o?las) © Mp(a.) »ass Mae > plac) < np(tf?las) - ac

7.B.3 Step 2 (b): Update factor to stochastic node messages

We begin with the update for the factor to stochastic node message 1M p(a®) > a® (a®).
Since the only neighbour of factor p (a”) is the stochastic node a® this message takes on

the form

M yq7) - o= (@7) < exp {5 logp(a”)}

o3 [bg (Cji)]T

k=1 1/%

~3/2 ]
-1/(43)"

This means that the update for the natural parameter vector is

~3/2
-1/(A7)”

and remains constant at this value since A7 is a hyperparameter to be specified by the

Mp(ag) - af <

user. Next we consider the message going from factor p {(0':”)2 |ax} to stochastic node a”:

T 1 z\2
mp{(az)z la®} > a* (a®) < exp [[Rfozm (az)zﬁp{(az)z la*) {(a ) }
212
T (077~ (o) 1))
><logp{(o'9”)2 |az}d (0'2)2]
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;
} ] ("p{mm,m, (@)} > (01)* * p{(o})?Iat} - (01’5)2)}

) K | log {a? T -3 :|do_x2
{kzll 1/ay, ] __(01)2 } ()

x
k

9T _l
K | log {af o 1 2
o< exp [k‘l[ 1/0/% _'[0 (O-Z‘)Q pIGnat ((U£)2 : ,r’)d (O'Z;)Q
N k

— _ T . e ey
where 7% = 17 (zla, i, (6%)?) > (01)* T Mp{(ot)?al} > (o7)? = [7? 1] . Using Primitive
7.4.6, we get

1

T ——

m - i [ log {a® 3
P{(a$)2‘ax}_)a:c (a )<—€Xp E:[ { k}]

B
=] 1/ag il
Uk
and thus, the natural parameter update is

_1

2

My {0ty ~ar | mf+1

3

The next message is expressed as

x\2 1 T
™ (o) a) » o L)) = eXp[fR;gEm o~ p{(e")[a") (¢7)

M (o) a7} - o (@)

x logp{(ax)2 la”}da”|

~3/2
K g {(e2)Y ]| _ 2 >,
o exp kz: [ O?/{((ka))Q }] _A % pIGnat (ak ’ np(a;g) - ay

My {(o7)?lat) ~ ) daj
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Using Primitive 7.4.6, this gives

m p{(o'x)Q \ax} N (o_x)Q {(0-06)2}
_3/2

K 2\
—expq{ ), log{(ffk 5 } ("Ip(a:) > ai " My (o) at} ~ )1 o
1/(e) -

("7p<a;5> > ai My {(o})lat} - )

2

and so, the natural parameter update is
-3/2

T’P{(U;f)g\ai} N (O_:)2 <~ ~ (np(aﬁ) - ap + np{(az’i)ﬂai} N ai)l +1

("pwi) > ai * My {(o1)?at} - )

2

Next,

M) - e (B7) < exp {7 logp (u7)}

E[ g 1 o?
o< eXp{kZl[('ui)Ql [_1/20_/3]}.

So, the constant value for the natural parameter vector is
2
:u,u O'u

Mp(ui) » wi < [_1/205 ] '

Moving along, we next consider the message going from factor p{w la, u”, (0':”)2} to the

stochastic node @ ,os:

m p{:E | a’vuz7 (O'Z)Z} — Tunobs (xunobs)

n K 1 1
o [Z;ZOE Jes Jex™ o plota e, (577 (@
xm p{w|a7“z7(0z)2} —->a (a) xm ILI —>p{m‘a“u,z7(a-z)2} (l"’w)

x x\2
X p{m|a,uw,(dz)2} St (H' ) x M (o_q;)Q —>p{:13|a,,u.z,(a‘z)2} {(0’ ) }

xm p{m|a’ﬂx’(o_x)2} - (07)? {(a-x)Q} « logp{a|a,/1'x, (a’x)2}

dadp®d (o%)?]
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1

n K
; kz::la-k:O RK /]%K {aik (np(aik\wk) - Ak + T]p {:1:|a,lﬁ”7 (Uac)z} N aik)}
T

o< exp[

.

1,

_ (Ni)2 ] (np {w|a,uz7 (O'I)Q} - uy, + np(uﬁ) - Mﬁ)}

{ log{( )) }] ( P{‘”|GH ()%}~ 2+77p{(0k) g} = (o7)? )}

unobm] [ azkﬂk/ :|dad,uwd (O'x) ]

azk/2

X
X

unobs i

Nunobs K '
— eXp Z unobs i
=1 k= unobs i
- 1 -

Z Qik X A4k X (np(alkkuk) - ik np {:c\a, u”, (01)2} - aik)

a; =0
x T,
Aﬂk le’lat (Nk I np {m|a7u17 (O_I)Q} N Mﬁ
1 2
x x
M) » ui) d pi. > wa (o7)? Prc,,, ((08)° 5
N k

"p{wk;, (02} = (00)* M {(ot)?at} — (az>2)
< d(of)

-5 Z Qi X Qjf X (np(alk‘wk) - Qi
alk =0

1 T\2 .
+T/p{m‘avuza(az)2}—’aik) f> ( k)2 pIGnat ((Uk) )

"p{w|c; ut (072} = (08)* T p{(o7)lat} ~ (075)2)
d (o7) ]

This gives
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m p{m|a, /J'zv (01)2} — Lunobs (mum)bs) -

g K [ s |
~5EXP (”p(amlwk) = aix Ty {ala, p”, (0%)2} - a,.k)
) ("p{:cm,m, ()2} — e o) » i),
("p{wm,m, (0)?} - g p(u) — u)
. ("p{wm,m, (0} = @0)* Mo (o) laz} ~ (o:)z)l”
("p{wm, w0} > (o) o {(of)?lak ) ~ <az>2)2

50D (p(anfon) ~ s Ty ol (077}~ )
) (M folasn (077} = (o2 T (o~ (00,
(7 (et (037} o0 M (ot )~ o0,

and so the update for the corresponding natural parameter is

<~

np {ﬂ} | a, ,U/mv (01)2} = Zunobs,i

~30xP (”pmmwk) > ai T {wla, u®, (%)%} » )
) ("p{:c\a, wt, (07)2} — i Mot ~ i),
("Tp{w\a, w02} » 2 ) — u)
) (7 fota. . (07} = 00 M (ot ) = (2.
("p{wm,m, (%)} ~ (o5)* Tp {(o7)?lat) ~ (a:)2)2

1
2P (%(amk) ~au " T {ala, p*, (5%} )

) (M ot (057) = 00> T (o2 1) = 02),
(M ot .07} = 0> T (o2 1) - (02),
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The next message has the form:

m

p(0]Q,@,02) > Tunops (Lunobs)

1
< exp{fm 207 e plofana,02) () XM yola,2,02) » a (@)

XM 2 )(ag)xm

)

xlogp(o|a,a:,ag)dadog}

.
P /]1;3 »/Rzo lvec (C;aT) ] (np(°|a»wv‘7§) —a T Mp(a) - 04)
|:10g (ag

) T
1/0? ] (Motofo . 2 * Myt - o2)

2
x ) o2 dado,
i=1 | l‘unobsj L

Tl aq
Thunobs T unobs.i ] 0_?, (Oxunobs,l + Oéo)
- 202

= exp 9

unobs,i

7
n
ungbs [ munobs,i

i=1
[ i 0’2 . + d0_2
o0 52 P1Gnai \70 3 Mool 02) = o2 * Tp(o2la,) ~ 02) 4%
* {0 S0P (41 Tytola, ) =
(o) - a1) doy + fR [Raoalenat (ap, a1 ;

X ,r]p(o|a,:n,o§) - aonp(ao) = o’ ’r]p(0|0‘:$703) - Qi
Mp(ar) > a1) dayg doq}

1 i 0.2 . + d02
2 Je 3 P1G 0 \ 70 5 Ty(ola, 2, 02) — 02 T p(02]an) —» o2 °

>0 0,

2 .
X/I;Oélenat (al J T’p(o|a,:c,ag) o ¥ np(oq) - 0‘1) don

Using Primitives 7.4.6, 7.4, and 7.4.1, this gives
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m

p(0]a,@,02) > Bunaps (Lunobs)

[ (M olo.02) = 02 Mytotian) = o).

+1

T
Ttungbs munobs,i
e 5|

(Moot .02) = 02 My(o2ian) — o2)

2

Mo a0 ot - ),

X _Eomunobs,l (

p(ola, x,02) - a1+np(a1) - a1)2
+J (np(o\a,m,ag) sat np(a) S 1, 2)}

) (Mtolonn?) = o2 Moo2ian) = a2). 1

2(77p(o|a 2,02) > 02 Mp(o2ja,) - az)

2

XIC np(0|a7w>go) - o + np(al) - 1

Therefore, the corresponding natural parameter update is

(np(ola 2,02) > 02 p(02as) 03)1+1

Ir’p(o|a7 Z, 0’3) = Zunobs,i h

Moving on, we next look at

(np(c’la, x,00) >0, +np(ao|ao) -0l )2

X —

(Mytole,z,02) o0 Mptan) = o),

§ O.’Eunobs,i (

7 (Moo, o?) — o * M)~ 1:2)]

_(77p(0|a 2,02) » 02 Mp(o?a,) » 03)1+1

2(,r’p(o|o¢ ®,0.) > 0, np(a lao) = ag)

2

xK (np(o|a x,02) > a1 np(al) -

p(o|a7a3,o(2)) - 051+Ir’p(a1) - O£1)2

K 1
M (a|w) > a (@) < eXP{Z Z M, palw) (@) X T yg)w) > w (W)
=1 w,=0
X

o< exp{

Using Result 7.4.2 gives

mp(a|w) Sala)e exp{

ogp(a |w)dw}

1
2
Wi =014

xair log (W) dwg} -

M=
g

K n
3PY
k:ll[zl

[21 {(T]p(wk) Swp T np(aik‘wk) ﬁwk)l " 1}])} .
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Thus, the corresponding natural parameter is

np(amlwk) — Qik < (w {(np(wk)Kﬁ W + np(aikwk) N wk)k n 1}
- [];1 {(np(wk) —wp T T]p(aik|wk) N wk)l + 1}:|) .

Next, we consider the message

n K 1 1
™M )(a]w) »w (W) < exp{ZZ Zogma»p(am) (@) x MM )4|w) > a (@)

i=1k=1a;,=
X

n K
o eXP{Z 2, 2. ain (”p{m\a,mxa% = i Mp(aon) »)
i=1k=1a;,=0
X

The use of Result 7.4.1 gives
K

log (wg,) {exp(?] e vy
i=1k=1 p{w‘avl‘ ,(0%) } ik

* p(aik|wr) aik)}] ’

This means that the update for the natural parameter vector is

mp(aw)aw(w)“exp[

Mp(aislwr) > wr = P (”p{wm, w02} = an * Mpainkor) - ) '

Next we derive the update for the factor to node message 110 () - o (w):
M ) w (W) < exp {5 logp(w)}

K
o GXP{Z log (wg) (o, = 1)}-

k=1

Therefore the update for the corresponding natural parameter vector is

np(wk) swp ap —1.

Similarly, we next consider another constant update, whose corresponding message takes

the form

M 3y - g (B) < exp{7logp(8)}

s || O
P vec(ﬁ,@T) —%vec(%Ig) ’
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and so the natural parameter vector takes on the constant value

0
-
T’p(ﬁ) -3 —%VGC(%I;;)
2
Following on, we next consider
m L m
p(o|a,w,03) - (a) < eXp f"unobs RZOE Lunobs —>p(0|a,az,0(2,) (xunobs)

xm p(0|a,m,0'g) — Lunobs (munobs)

X o2 %p(o\a,m,ag) (Ug)
xm plo|a,x,02) - o2 (Uo)

x logp(o‘a7 T, 0-3) dmunobs dag}

T
o ex nunzobs xunobs,i
P "unobs JRsq i1 $2 np {QB | a, /"'zy (01)2} —> Zunobs,i

7 unobs,i
+77p(y|ﬂ7 T, O'S) — ZTunobs,i + np(0|a, T, O'g) — xunobs,i)}

llog (Ug

) T
1/02 ] (Mool . 2 * Myt - o2)

a |[ ZXo
x 1 7 v T v dmunobs do-g
vec (aa) — 5 vec (X X)

.
_ (81
- [vec (aa’) :|
A ) )
A@ 2 PlGna (935 Myoia,,02) o2+ Myo2fa) - o)

>0 0,

« [ynat (X)TO

q(®unobs)

1
1 2,
‘5fR o2 P1ay, <”o  Mp(ola, @,02) > 02+ Tp(02la,) - az)

>0 0,

xvec {Enat (XTX)}

q(®unobs)
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+
("p<o|a, 2,02) > 02 M p(02la,) » o2

)+1
1

(np(O\cu 2,02) = 02 p(o2la) - 03)

2

l a ]T <Eps o (X) o
= exp
vec (aa™)
_ (np(OIOt, 2,02) = 02 Mp(o2la,) - 05)1+1
Q(np(o|avm7gz) - 0’3+?7p(0'3|a0) - 03)2
| xvee {E‘;l(a;unobs) (XTX)} B
where
-~ 1 Tobs
Enat X) = Nobs obs - :
q(munObS) ( ) [ 1nunobs _% {VeC_l (nVEC)} ' 77 ]
;?afunobs) (XTX) -
[ lgobsmobs |
n _
% ;rlunobs {Vec_l (nvec)} ' 77
1T T ||m0bSH2+ .
Nobs ¥ Obs 1 -1 - 2
— E3 -1 X H —35Vvec 77 n H
i e () | R () T
| 2 ,vec B
and

- T_
Ir’ = [/'71 /'72,V6C:| = T’p{m | a, I-lfza (01)2} g mlltlobs-|-l'7p(y|ﬂ7 Z, 03) g munobs-”-T’p(o|¢17 Z, 03) — Tunobs

Therefore the corresponding natural parameter update is

("p(om,w,ai) o2 My(02a,) az) Y

1
(np(OIa,m,oi) =~ 02 y(02a,) 03)

x Fnat (X)TO

Q(munobs )

2

Mo, z,02) »a <
) +1
1
2(,’71)(0\047%03) -0, +np(0§|ao) - 03)2

Xvec {Enat (XTX)}

q(®unobs)

(np(0|a7 x,05) —> 0, +np(0§\ao) -~ o2

Next we have
M ya) > o (@) < exp {7 logp(a)}

g ey |
P ) —%VGC(%IQ)

(o7

vec (aa”
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Therefore the natural parameter update stays constant at:

M) »a < [—%vee(%b)l

(op

The next message we look at is from p(o|a,x,02) to o>

mp(o|a x,02) > o2 (03)

eexp{A2 _[nunobs_ a-plola,x 02) (a) me(o|a,a:,ag)—>a(a)

Lunobs > p(O|OL T, 0. ) (munObb) xm p(o\a,m,og) — Lunobs (mum)bs)

o 10gp(0|0(,2137 Ug) da7 dmunobs}

]
o exp fR f [Vee (C;og)] (Mool z.0?) ~ o * () + o)

T
% nunZObS xunobs,i i
2 np{m|a7 ”17(0_1)2} — Zunobs,i np(y|ﬂ7m70?) g xunobs,i

=1 xunobs,i

T
log (O'g) -n/2
+np(o‘a7m7(72) — munobs,i)} x [ 1/0_3 _%HO _ X—aHQ dadwunobs

_ exp log (UZ) ! -n/2 i
1/o? —ipnat (lo- Xa|?)

q(®unobs )

where

Enat (HO—XQHQ):

q(munobs )

[XchObSXxobs {VeC*1 (772*,\/ec)}1]

- -1
+||O.Z’unobs H + O Enat (Xxunobs) {Vec_l (772*,VGC } 77]_*

Zunobs ™~ q(Lunobs)

Ogobs %Xl‘obs {Ve(fl (n;k,vec)}il 771"

+1+ tr {Enat (X;unobszunobS) {Vec_l (772*,%0)}_1 [771* (nl*)T {Vec_l (772*7‘76‘3)}_1

Q(wunobs)

_21]}’

B (Xawon) = [Tn = 5 {vee™ (0500)} " 117,

(I(munobs

Enat

(wunobs

) (X;unobsx.ruhobs) =

Tunobs nunobs {Vec_l (772 vec)} 771

2{Vec_1(772vec)} nelE |
5 {vee (MSyec)}

510, (voc (M)} M
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and
.

_ [, % K _
?7* = [771 772,vec] = np(o\a7w,ag) ot np(a) o
Therefore, the update for the corresponding natural parameter is
9 -n/2
np(o\a,m,crg)»ag (UO)el_lEnat (O—XQHQ)]'
2 q(wunobs)

Following on, the next message is

m (02) « Im (ao) x MM (ao)
p(a2la) » oz \%0) = FPY fp ZH 4y 5 p(as) (o p(oolao) > a, \*

<logp(02la,) da,)

log (a,) !
o P {/1%>0 [ 1/@0 ] (771)(0'3|a0) —> Qo + np(ao) - ao)
y log (03) ! -3/2 da
1/03 _1/ao ?

o llog (Jg) ] ) -3/2
= exp .
Yo ‘A — PiGgae (Mo(o2ian) - a0 * Mo(a) + a,) 40

>0 Qo

With use of Primitive 7.4.6, this gives
2 oglo ( ) X
m p(a(2,|ao) -0, (UO) P [ 1/0'30 ] - np(ag\ao) — ao+77p(ao) — Qo 1+ 5
(np(‘73|a0) - ao+/'7p(ao) - 00)2

therefore the corresponding natural parameter update is
-3/2
Mp(o2as) » o2 < | _ (np(ffg\ao) ~ a," Mp(a) ~ ao)1+1
(np(oilao) ~ a, " Mp(as) - ao)2
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Next, we look at

2 (07)

1 )
Mo o (@) = o [ 2T ()M

xlogp(odlao) do?}
.
1 2
o< exp / Og(O-QO) (’r’(‘ 2) 2+’l’](2| )*) 2)
Ry | 1[0 ploja,x,0;) ~ 0, p(oslao) - o,

X log (ao) T _% do?
1/a, -1/02 ¢

1
log (a,) 2
= exp B 1 ( N ) do?
Hao 220 92 PiGiat Motolecz.02) » 02 * Mp(o2las) -+ 2) 4%
Once again, making use of Primitive 7.4.6, we get
-3/2

(,r’p(o\a7w,0(2,) —>Ug+np(‘7§|a0) _"73);r1 ’

log (a,) ]

" p(o2lac) » a, (00) = CXP [ 1/a,

(Mot ,02) =+ 2 Tp(etfan) = o),
and so, the corresponding natural parameter update is
-3/2
Mp(02la0) > a0 < | _ (np(O\m z,02) > 02 p(02la,) » 05)1+1

Mo (ola,z,02) » 02 p(02ja,) — aﬁ)

2

Next, we have

m p(ao) — ao (ao) < exp {% log (GO)}
log (a,) ! -3/2
P —1/142

)

1/a,

thus the corresponding natural parameter vector has the constant value

~3/2
~1/4;

T,p(ao) Sa,
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Next, we have

r\2
M (ala,uw, (6)) — (@) 1(07)7}

n K 1
1
_m x x
<~ exp [;k;aikzzo\/ﬂgnunobs ‘/RKZ a—>p{w‘a7u ’(0.2) }(a)

M (a7, (0%)) - a (@)
UL > plzla,p, (%)) (Tunobs) X 1T p{z|a, 1, (0%)%} > Tunows (Tunobs)
M a0 BT (a0 (077 e (M)
xlogp{a:|a,,uf”,(U‘B)Z}dadazu,,obsdux]
n K 1
o [Z &2, S e A (st s ot 7)) |

i=1

unobs,i

n
unobs [ xunobs,i

T
2 ] (np(y\ﬂ,wmf) — Tunobs,i + np {:I: ‘ a, p‘mv (O—E)Q} — ZTunobs,i
T
K T
Hy
+I’7p(o\a,m7gg) - xunobs,i)} x Z [ (,ui)2 ] (,r’p(/j’z) - ,U/i
o K | log (a,‘f)2 ' -tak
+np{mla,u”,(0"”)2}*ui)} ZZ[ { o } 1 2
dad, .. dp”]
n K 10g{(0.x)2} T
o< exp ZZ K

1
1 , .
"3 2, ik X ik X (”p(amk) ~aw My {ala, w7, (0°)} - )

Ak =0

1 .
) X Qjf X (np(amkuk) = Qik + np {m‘av /J'ma (0_20)2} - a“")

2 .
X[I% \[]R (:1:2 - Mk) pNnat (x“ ’uk ! np(y|ﬂ,cc,a§) — Zunobs,i

+I’7P{93 | a, uz7 (01)2} — ZLunobs,i + Ir’p(o|aa &, 0-3) — Zunobs,i

T
Ty {ala. w*. (o)) > i * o) ~ mz) @ Bunos; & 1

This implies that the (a;1,...,a;x) follow the

Mnat {17 (fr]p(azkd) - a; + 77]3 {:E‘a, l"‘w7 (O.E)Z} - ai) Y

1

np(ailw) - a; + np{w|a, [J,I, (0'1)2} - ai)K
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distribution and making use of Result 7.4.1 and Primitive 7.4.2, we get
2
T fala,u, (0} (02 1(O7) )

exp iK llog{(alf);}r

1
2P\ Mp(asklwr) - ain T p{a|a, u*, (67)*} > au

1
~36XP (np(amlmc) > an Ty {ala, p”, (67)%} > “ik)

8 I (np(y|187 &€, U?) —> ZLunobs,i + np {213 | a, y’l” (0—1)2} > Tunobs,i
—"_,r’p(0|(17 x, Ug) — ZLunobs,i ’ Irlp {w|a7 I‘l’z7 (01)2} - ui

() > i

Therefore, the update for the corresponding natural parameter vector is

Ny (zla,p”,(0%)2} > (o) <

1
—gexp (77p<am|wk> = ag "y {ala, u*, ()7} - )

1
~3€Xp (Wp<aik|wk> ~aun Ty {zla, u*, (07)%} » a)
x1 np(yw,:v,a?) — Tunobs,i * np{fﬂ la, pn*, (f’x)Q} > Zunobs,i

Mp(ole,x,02) = wunonei * p{@la, u*, (67)*} > ui

() > i

Next we look at

M a)a,w®, (0%)) > a (@)

oo URK S Jorwn 2™ 0 ol o) ()

z\2 T
T, (05 - (092 HOD) I e, (07)7) (H)

x
Xm p{w|a’l“"17 (01)2} - H‘z (IJ/ ) % m Lunobs —>p{£lf|a,[,l,z7 (UI)Q} (a:unobs)

Xm (:I"unobs) X logp {m ’ a’? “1.7 (0-1)2}

p{w | a, ”17 (01)2} — Lunobs

d (O.:L‘)Q dux dmunobs]
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i [1og{(o%)” !
o< exp |:[RK /H-QK fnunobs {kzl [1 f/{((o_g))2 }] (np {ala, pu®, (67)2} > (o7)?

K T
H
+np{(0?§)2|aﬁ} - (01‘5)2)} % {kzl [ (Mi)z ] (np{w\ayu‘"”v(d’”)Q} -

Tngbs K xunobs,i !
+np(ui)—>ui)}x > 2 2 (np{mla,uzv(azf}—>xunobs,i

=1 k=1 unobs,i
+np(y|ﬂ,m,0§) —> Lunobs,i + Ir’p(0|aama0§) - «Tunobs,i)}
L3 . z 2112 1 ) 2 2
XZZ% log {QW(%) } eXP{—§ (@i = p)” [ (o) }

i=1 k=1
d (o.x)z d“JT da:unobs]

n K
o exp{z S, (-% Ul% tog {(o1)%) Prc, ((a;g)2 Ty (afa (0] (o)
2 1
+77p{(0k) |aj} — (Uk)) ( ) _fR ( )2pIGnat (( k) ’np{cc\au (")} = (o})?

+’7p{<az>2|az}»(o:>2) ff(“‘ HE)” PNy (i 5

p {m | a, Nx7 (o_x)2} — Lunobs,i + 'r’p(y\ﬁ, Z, Uf) — ZLunobs,i + np(0|0¢: €, Ug) - xunobs,i,

np {zla,p*, (6¥)*} - pi Mgy > /flg) A T ynobs.i dl‘i])} ‘
Making use of Primitives 7.4.2, 7.4.6 and 7.4.7, this gives

M 2la,p®, (07)?) »a (@)

n K
1
o {Z f”’“ (=4 o2 = (ot 077} = 02 * Moo 7).}

¥ ( My (ala,u”, ()2} ~ (01)* * Tp{(oF)?ai} ~ <g;)2)1 - 1}

p{w\au (@92} ~ (o2) T {(o7)laz} ~ (m)

p{w|a,m, (@)%} - (62)* Mp {(o1)?az} > (o7)?

p {(B ‘ a, [l, (O'z) } — Zunobs 1?7p(y|/67 T Us) —> ZTunobs,i + np(o‘av &, Ug) g xunobs,i’

npma,m,www+"p<uz>»uz)])}~

Recognising that a follows a series of n Multinomial distributions, the update for the
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corresponding natural parameter vector is
My {@la,u”, (6")*} > au
2 [log {‘ ("p{w\a, w0 > (o) T o {(o)?at} (az)2)2}
¥ {‘ ("p{mm,m,(aff} = (o)? M {(o)lat) ~ (azf)l - 1}

) [ ("p{wm,m, (@)} = (01)* Mo {(0F)?af} — <a:)2)1”
(”p{wm, ()2} > 00 M {(o1)2at} - (oz>2)2

xZ (np {2E | a, /—l‘zv (UI)Q} - xunobs,inp(y|ﬂa &, Jg) —> Zunobs,i
+Ir’p(o‘a7mao—2) - munobsﬁi’ np {:I:\a,p,I? (G'I) } — :U/k z + np(uk) — 'u,k):l

Next,
M g,y (0%)) — = (H)
“eXp{fmzzlkzh;)fR w7 () > plzl a0} @)}
XMl (o%) }»(off{(” VI e, (o)) (@)

X1 p{:c|a, um’ (0_1)2} > a (a) xm Tunobs ﬁp{w|a,um, (o_r)2} (munobs)

2
XTI (a1 (07)) — Banone (Tnebe) X logp (] @, 7, (7))

d (U$)2 da da:unobs}

K x T
[me 1h- la%:O f"‘mob {1;1 " ((:k))2 }] (np{wlmuw,(tf”)z}% (%)
My {(ot)?lat} - (@b)? )} X {i

T
Tunobs | o .
unobs,i

X { Z [wz ] (Ir’p{w | a, I"'I7 (01)2} — Zunobs,i + np(y|ﬂ,m,0§) — Zunobs,i

1
K
Za/ik (np{:da, Hz’ (01)2} - Ak + np(alkkuk) — am)}

<.
Il
—_
ol
1l
—_

i=1 unobs,i

+np(o\a,m,m2)) - :cunobs,i)} X {Zn: Z [ ( NE)2 ] [aik%(af;// ((z]g;;))Q) ]}

d (o-m)z da‘ dwunobs]

239



7.B. DERIVATION OF ALGORITHM 12

aik:O

212
X +np{(o;f)2\a£} . (Uz)z) d (Uk)

aik:O

7\2
M {(ot)?lat} - (az)Q) d (77)

Using Primitive 7.4.6 and Result 7.4.1, we get

{Ege (@),

XfR$i PNyt (mZ Ty (@) a, 17, (0°)*) = Tunobss

+,rlp(y|ﬁv T, U?) — ZLunobs,i + Ir’p(o|a7 T, Ug) — Lunobs,i

1 T\2
X/R 0( k)2 pIGnat ((Uk) ) np{w|a,;ﬂ,(o-z)2} - (o%)?

Z Ak X Qg X (np {m\a7 e, (02)2} - ik + np(aik|wk) - aik)

dxunobs,i

1
1 . .
3 DL ik X ik X (np{fda, u, (0")?) ~ am © Mp(aiklwr) - az‘k)

1 2
X‘/]1\§>O( k)g pIGnat ((Gk) y T’p{w|a,ux,(0'x)2}—>(g‘,f)2

1
—zexp( p{ela.u”, (%)%} = au " paulon) - )

( My {wla, 7, (6°)?) > (69)* p {(07)%a2} — (o7)° )

n K
o< exp Zkz_:l

1
“2%XP (771) {#la,pu®, (6%)?} - au © Mp(ainlwr) - az‘k)

My (2la, 7, (0)2) > (09)* p {(07)%az} — (ais)?)l“

]
[(%] ( Ty oo, (0} = 7 T (o Pl} — (o1)7),

where
wobs

nat
T ( ) - E3 - E3
q( unobs) l _% {VeC 1 (nvec)} 1 /'7
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therefore the corresponding natural parameter vector is

Ny (zla,p*, (0%)*} > uf ©

[ 1
—30Xp ("p{wm, w5, (0)?} = a * Mp(afer) - )

X {Eq’r(l;inobs) (w)}l
) (7 ot (077} (o0 M ) ~ (azf)l”
("p {zla,u*, (0)2) ~ (60)2 p{(o1)2las} > (az)2)2

1

) (M ot (057} = 0> T (et} = o?),
(M el . (07} = 0> T (o211} ~ o17),

Continuing on, we next consider

m

p(y |'8’ T, 0-?) — Lunobs (wunobs)

1
< exp{fRs 207 B-p(ylB.2,0%) B) XM oy 82,02~ g (B)
XM 2 o yi8,2,0%) (92) X T (418 2 02) = 02 (02)

xlogp(y|B,z,02)dBdo?}

ﬂ T
e [fR /RZO {[ vee (B47) ] (Moo, 2.02) ~ 5+ Mot - ,@)}

y log (af
1/o?

X 2

i=1

unobs,i

) T
] (Mo, 2.02) ~ o2 * Mp(oiar) a)}
T
Tungbs lxlmObs’i ] [ o-_lg (/Bl‘yxunobs,i - BOﬁx - /Bcﬁxccvunobs,i) ] dIB de]

_ B
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Munobs
= exp Z

xunobs,i

T
2
i=1 [xunobs,i ]

[ 1 2 2
./Ron_gpIGnat (JE Mpyis. 2, 02) > o p(o2ac) - 02) doe

x {yxunobs,ifRﬁxpNnat (ﬁx s Moy1B.2,02) — 6o (8 — /Bz) d By
_ RzﬂoﬁxpNnat (507593 s My1B.2,0%) — o+ Mo(Bo) » o
Moyl,.0%) — 5.+ Mol — 5.) ABod e
_C”””“‘)"S’ifﬂgzﬁcﬁmpl\lnat (BerBe 5 Myyi..02) 5. * () = 6
Mp(ylB, ,02) - 8. + To(8.) — 51) dﬁcdﬂm}

£

1 1 2. 2
_5_/R;>OO._§pIGnat (('J"€ ; T’p(y|ﬂ,:c,a§) N O’? + np(af\ag) —>0'2) do-s
Xﬁﬁﬁ%m@“"mm@ﬁrwJWWMe&%wf

With the use of Primitives 7.4.5 and 7.4.6, this gives

m

o< exp

Munobs

i=1

Dy B, 2, 02) — Tanops (Lunobs)

(np(ylﬂ z,0%) > o2 My(o2ja.) » 03)1+1

(np(ylﬁ, z,02) > 02 Mp(o?a.) » 0?)2

_%ymunobs,i Enp(yﬁ,m,gg) ~ BZ+I’7P(BI) - 51)1

X

. T T (Mg .02~ 8 o)~ 67 1 )
unobs,i
l2 ] ~Counsni (My(yia,a,0%) 5 * (o) - 2 3)}

unobs,i

(np(ylﬂwﬂ?) = o2 My(o2a.) - U?)1+1

1
1

(fr’p(y|/6?w70€2) - O'g+np(0'§‘a5) - 03)2
Ir’p(yLBamvag) - /B:c+np(ﬁz) - ﬁz)l

! (Motais .02 - 5. Mot - 5.),

and so the corresponding natural parameter update is
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<«

Ir’p(y|/87 Z, U?) = Tunobs,i

(np(ylﬁ,w,af) L 03)1”

("p<y|ﬁ, 2,02) » 02 Mp(o2la) » o)

g E"p(yﬁ, 0.o?) - 5 o) = 5.,

X
Mo yi8,2.02) > 5. TIp(8.) — ﬁ)
T (M), 202 - 5+ M) - 8 1+ 3)

_c.runobs,ij (np(y|ﬂjw7g?) — ﬂ + np(ﬁ) -3 ; 27 3)}
1 Molg.2,0?) » 02 Mp(o?ac) - U?)1+1
4

(np(ylﬂ,w,cr?) =~ 02 p(o2)as) - U?)Q
("p<y|ﬁ,w,az) = 8. M(s.) ~ m)l

(M1, 2,0%) -~ 5. o) - 61)2

X

Next we consider the message from factor p(y |3, x, U?) to stochastic node 3. The deriva-

tion for this message is similar to that of 77 () and has the form:

plola,z,07) - a

(np(yIB, z,02) = o2 p(o?a.) - 0?)1+1

(np(ylﬁyw,cr?) =~ 02 Mp(o?a.) » 05)2
><Enaut ) (X)T y

q(wunobs
-
Mp(yi6.z,0%) ~ 8 )
+ +1
(np(ylﬂ, z,02) » 02 Mp(o?a.) » U?)l

2(’7p<y|,6,w,a§> = 02 My(02a.) - o7 )
xvec {Enat (XTX)}

q(Tunobs)
where
Ehat (X) = 1o Caons Zobs B
) V7| 4 e e (15,00} 8
and

Enat (XTX) —

q(®unobs)
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— 1;[Lobsm0bs . ]
" L 310 (e (MEvec) |
any
CobsTobs
1,c le]® — 5 imobs {vec‘1 (nvec)}_l
x1¢
17Tlobs Lobs . CaonsTobs ) |Zons]*+ .
_%11—7/unobs {Vec_l (T]vec)}i _%C;unobs {Vec_l (nvec)}7 H - % {Vec_l (nvec)} 7;] H2
| <1)F Ul -1 {Vec‘1 (nvec)}i |

: 2 2
The last four messages we consider are 770 p(ylB,z,02) > o> (JE), m p(02]as) » o2 (05),

€

m (a:) and M ) - a. (ac). The derivation of these messages is similar to

(a,) and

p(U?|aE) - Q¢ p(as

that shown for 1M 2 (03), m

p(o|a,z,07) - op

2 (02), m
(o2).

CA R p(5lao) — ao

™M ,4,) - a, (a,), respectively. Consequently, we only give their corresponding natural

parameter updates:
-n/2
?7 2y, 42 0'2 <« 7
ety O | (- xa)
-3/2
Ir’p(o?|a€) - a? < _(np(af\aa) - a5+np(a5) — ae)1+1 ’
(Ir’p(gng) —> Q¢ +np(as) nd a5)2

~3/2
Mp(o2la) » ac © _("p(.yw,o?) ot M - a2) 1 |,
(n 41

p(y|67$703) — 0¢ p(o-§|a’5) - 0'3)2

-3/2
Mooy~ |y 2

)

where

Byt (ly=XB1?) -

q(munobs )

2
At [ X X {vee (08 ee)} |

_ -1
+”yl‘unobsH2 + y;unobsE(I;(aqt;unobs) (Xa:unobs) {VeC ! (ng,vec)} ?7?

-1 -1
+%tr {E;lfiullol)s) (X;unobsXxu“C’bs) {VeC_l (ng,vec)} [77: (n?)T {VeC_l (n;,vec)}

—2I},

-1
yaf:obs + %Xafobs {VQCil (ng,vec)} 77?
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nat _ 1 -1 -1
Eq(wunobs) (X:cunobs) = [1nur\obs Crunobs ~ 3 {VeC (UQ,VGC)} 771 ] ,

Enat (XT Xafunobs) =

q(®unobs) Zunobs
[ _1qT -1 ]
TNunobs T Cy b 2 lnunobs {VeC (772,\/6(:)}
Nyunobs LURObS Xn
1
_1.T -1 -
T C Hc ”2 2c£l?unobs {Vec (7727\7@(3)}
n Tunobs Tunobs
unobs b b X/r] )
1
- - 1 1 ! 2
_1qT -1 1.7 -1 ——{VGC_ ( )}
5 Lnons {vec (nz,vec)} 3 Caunobs {Vec (n27vec)} H 2 nQ,vec 7171 [
1 -1 -
L TN xT); -5 {Vec (7727%6)} |

.
and 77. = [77? ng,vec] = np(y|,8,:c,0?) -3 + np(ﬁ) -3

7.B.4 Step 3 : Optimal ¢-densities

Once convergence is achieved from Steps 2(a) and (b) we get the optimal g-densities of

each stochastic node through the following updates:

Mate) = Mol z,02) > o * Mp(a) > a

M302)  Mpolar,z,02) > 02 * Mp(o2ja,) » o2

Mg(a0) < My02la0) » a0 T Molao) > a0

For 1<k < K:
M) <~ Motap) > ai * Mo (07210} — a
a0y ™ Mo(en ez} > 00 * o {ala, e, (07)?) = (o1
T’Q(Hi) < np {w|a,;ﬁ, (a”)g} - Uy + ’r’p(/ﬁz) - py

For1<i<nand 1<k<K:
T’Q(aik) - np {zla, p*, (6°)*} > ain * np(aikkuk) - aik
M) ~ Motk » wn ¥ Tpwr) > w

M) < Moyi,a,0%) 8" Te) > 8

"7;(05) - TI + n* 2

*

p(ylB,@,02) > o2 p(o2lac) —» o2
* «— * + * X

T’Q(ae) T’p(af|a5) - Qe ,r,p(ag) - Qe

For 1 <7 < nynops:
* - * + *
nq($unobs,i) Ir’p {m|a, /“Lx7 (O-x)Q} — Tunobs,i np(y|ﬁa x, Ug) - xuﬂObSai

+Mn

p(o\a, Z, Uz) — Zunobs,i )
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Chapter 8

Conclusion

This thesis has aimed to increase the body of algorithms and results on MFVB inference
in heteroscedastic and longitudinal regression. It has helped emphasise the importance
of MFVB in both semiparametric and nonparametric regression settings and has demon-
strated that MFVB provides a fast deterministic alternative to the stochastic MCMC with
often little degradation in accuracy. Overall, we have developed extensions of previously
used MFVB methodology for some model settings, whereas in others, we have developed
original MFVB algorithms which had not previously been considered. Even though the
simulations and real datasets used in this thesis have not exceeded over 10 megabytes in
size, the idea behind the construction of these fast algorithms is to apply such methodol-
ogy to larger and even more complex datasets that require further storage than what is
available on a standard computer.

In Chapter 2, we extended the work of Al Kadiri et al. (2010) to obtain an MFVB
algorithm catered to the marginal longitudinal semiparametric regression setting. This
resulted in faster inference for the nutritional epidemiology study and it was clear that
MFVB estimation of the model parameters in a simulation study was very high.

Chapter 3 considered the setting involving heteroscedastic semiparametric regression.
This led to a modification of ordinary MFVB, called non-conjugate variational message
passing which aids the incorporation of a heteroscedastic component without the need to
stray from closed form algebraic expressions. Overall, the accuracy of the mean functions
is very high and the accuracy of the variance functions, whilst not as accurate as the mean,
are still producing considerably favorable accuracy scores.

In Chapter 4, we looked into the development of MF'VB algorithms for three extensions
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of the heteroscedastic setting considered in Chapter 3. We explore a real-time, bivariate
predictor and additive model analogue of Chapter 3. Through the use of real-data exam-
ples, simulation studies and a real-time movie, we saw the time benefits of using such an
algorithm.

Chapter 5 looks into the development of an MFVB algorithm for subject-specific curve
models making use of longitudinal and multilevel structures. This chapter takes advantage
of the structure of the model and looks into streamlining a naive implementation of an
MFVB algorithm, resulting in even faster inference.

In Chapter 6, we derived a fast MFVB algorithm to fitting a linear regression model
with classical measurement error. The time savings here were evident, however extension
of such methodology to arbitrarily large models involving measurement error would show
time savings of higher magnitudes.

Chapter 7 discussed VMP, an alternative to MFVB, which produces the same approxi-
mation but with a different algebraic system. There, we derived the VMP updates for two
models used throughout the thesis and provided the details of the methodology behind
VMP by presenting a general VMP scheme.

It is generally not known ahead of time whether the MFVB approximation will produce
an acceptable level of accuracy. The accuracy of MFVB varies depending on the type of
application. As exhibited in this thesis, MFVB estimation of mean curves is very good but
MFYVB credible sets are generally underestimated. However, even with the shortcomings
of poor estimation of credible sets, the speed and computational gains afforded by MFVB
make it a good choice for complex models combined with large datasets.

Each chapter has shed light on the overall effectiveness of MFVB inference as a fast
alternative to MCMC when time and/or storage is of concern. We have seen that the
accuracy of MFVB varies depending on many details involved in the type of application.
As indicated by the variety of models used, MFVB is of no doubt a dynamic area of

statistical research where the potential to further contributions is profound.
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